OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Molecular Topological Index.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = 8*n*(n+1)*(n-1)^3.
G.f.: 48*x^2*(1+x)*(1+9*x)/(1-x)^6. - Colin Barker, Aug 07 2012
E.g.f.: 8*x^2*(3 + 13*x + 8*x^2 + x^3)*exp(x). - G. C. Greubel, Jan 04 2019
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 13/128 - Pi^2/64 + zeta(3)/16.
Sum_{n>=2} (-1)^n/a(n) = log(2)/4 - Pi^2/128 - 17/128 + 3*zeta(3)/64. (End)
MAPLE
[8*n*(n+1)*(n-1)^3$n=1..30]; # Muniru A Asiru, Jan 05 2019
MATHEMATICA
Table[, {n, 1, 30}] (* G. C. Greubel, Jan 04 2019 *)
PROG
(PARI) vector(30, n, 8*n*(n+1)*(n-1)^3) \\ G. C. Greubel, Jan 04 2019
(Magma) [8*n*(n+1)*(n-1)^3: n in [1..30]]; // G. C. Greubel, Jan 04 2019
(Sage) [8*n*(n+1)*(n-1)^3 for n in (1..30)] # G. C. Greubel, Jan 04 2019
(GAP) List([1..30], n -> 8*n*(n+1)*(n-1)^3); # G. C. Greubel, Jan 04 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 11 2011
STATUS
approved