[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192839
Molecular topological indices of the square graphs.
1
0, 48, 768, 4320, 15360, 42000, 96768, 197568, 368640, 641520, 1056000, 1661088, 2515968, 3690960, 5268480, 7344000, 10027008, 13441968, 17729280, 23046240, 29568000, 37488528, 47021568, 58401600, 71884800, 87750000, 106299648, 127860768, 152785920, 181454160
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Molecular Topological Index.
FORMULA
a(n) = 8*n*(n+1)*(n-1)^3.
G.f.: 48*x^2*(1+x)*(1+9*x)/(1-x)^6. - Colin Barker, Aug 07 2012
E.g.f.: 8*x^2*(3 + 13*x + 8*x^2 + x^3)*exp(x). - G. C. Greubel, Jan 04 2019
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 13/128 - Pi^2/64 + zeta(3)/16.
Sum_{n>=2} (-1)^n/a(n) = log(2)/4 - Pi^2/128 - 17/128 + 3*zeta(3)/64. (End)
MAPLE
[8*n*(n+1)*(n-1)^3$n=1..30]; # Muniru A Asiru, Jan 05 2019
MATHEMATICA
Table[, {n, 1, 30}] (* G. C. Greubel, Jan 04 2019 *)
PROG
(PARI) vector(30, n, 8*n*(n+1)*(n-1)^3) \\ G. C. Greubel, Jan 04 2019
(Magma) [8*n*(n+1)*(n-1)^3: n in [1..30]]; // G. C. Greubel, Jan 04 2019
(Sage) [8*n*(n+1)*(n-1)^3 for n in (1..30)] # G. C. Greubel, Jan 04 2019
(GAP) List([1..30], n -> 8*n*(n+1)*(n-1)^3); # G. C. Greubel, Jan 04 2019
CROSSREFS
Sequence in context: A145155 A105948 A350378 * A014401 A241873 A233784
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 11 2011
STATUS
approved