[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105948
a(n) = C(n+7,n)*C(n+5,5).
1
1, 48, 756, 6720, 41580, 199584, 792792, 2718144, 8281845, 22902880, 58402344, 139007232, 311800944, 664191360, 1352103840, 2644114176, 4988699793, 9114302736, 16175074300, 27959131200, 47181033900, 77886151200, 126001769400, 200078424000, 312275179125
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
G.f.: -(21*x^5+175*x^4+350*x^3+210*x^2+35*x+1) / (x-1)^13. - Colin Barker, Jan 29 2013
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 1225*Pi^2 - 1740851/144.
Sum_{n>=0} (-1)^n/a(n) = 35*Pi^2/6 - 3584*log(2)/3 + 61719/80. (End)
EXAMPLE
If n=0 then C(0+7,0)*C(0+5,5) = C(7,0)*C(5,5) = 1*1 = 1.
If n=12 then C(12+7,12)*C(12+5,5) = C(19,12)*C(17,5) = 50388*6188 = 311800944.
MATHEMATICA
Table[Binomial[n+7, n]Binomial[n+5, 5], {n, 0, 30}] (* or *) LinearRecurrence[ {13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {1, 48, 756, 6720, 41580, 199584, 792792, 2718144, 8281845, 22902880, 58402344, 139007232, 311800944}, 30] (* Harvey P. Dale, Apr 08 2019 *)
CROSSREFS
Cf. A062196.
Sequence in context: A102279 A132464 A145155 * A350378 A192839 A014401
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 27 2005
STATUS
approved