[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132464
Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(6,n).
1
0, 0, 0, 0, 0, 1, 48, 735, 6272, 37044, 169344, 640332, 2090880, 6073353, 16032016, 39078039, 89037312, 191456720, 391523328, 766192176, 1442244096, 2622518073, 4623197040, 7925786407, 13248326784, 21641442900, 34616067200, 54311107500, 83710972800
OFFSET
1,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).
FORMULA
From Robert Israel, Jul 16 2020: (Start)
a(n) = (n - 5)^2*(n - 4)^2*(n - 3)^2*(n - 2)^2*(n - 1)^2*(2*n - 6)/86400.
G.f.: (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)*x^6/(1 - x)^12. (End)
MAPLE
seq((n - 5)^2*(n - 4)^2*(n - 3)^2*(n - 2)^2*(n - 1)^2*(2*n - 6)/86400, n=1..50); # Robert Israel, Jul 16 2020
CROSSREFS
See A132458 for further information.
Sequence in context: A361188 A186162 A102279 * A145155 A105948 A350378
KEYWORD
nonn
AUTHOR
Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007
STATUS
approved