[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a145155 -id:a145155
     Sort: relevance | references | number | modified | created      Format: long | short | data
Coefficients in expansion of Eisenstein series E_2 (also called E_1 or G_2).
(Formerly M5145)
+10
110
1, -24, -72, -96, -168, -144, -288, -192, -360, -312, -432, -288, -672, -336, -576, -576, -744, -432, -936, -480, -1008, -768, -864, -576, -1440, -744, -1008, -960, -1344, -720, -1728, -768, -1512, -1152, -1296, -1152, -2184, -912, -1440, -1344, -2160, -1008, -2304, -1056, -2016, -1872, -1728
OFFSET
0,2
COMMENTS
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
The series Q(q), R(q) are modular forms, but P(q) is not. - Michael Somos, May 18 2017
REFERENCES
R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see pp. 111 and 113.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 19, Eq. (17).
LINKS
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
Heng Huat Chan, Shaun Cooper, and Pee Choon Toh, Ramanujan's Eisenstein series and powers of Dedekind's eta-function, Journal of the London Mathematical Society 75.1 (2007): 225-242. See P(q).
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
Varin, V. P. Special solutions to Chazy equation Comput. Math. Math. Phys. 57, No. 2, 211-235 (2017), eq (75)
Eric Weisstein's World of Mathematics, Eisenstein Series.
FORMULA
a(n) = -24*sigma(n) = -24*A000203(n), for n>0.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 4*u2^2 + 9*u3^2 + 36*u6^2 - 8*u1*u2 + 6*u1*u3 + 24*u2*u6 - 72*u3*u6. - Michael Somos, May 29 2005
G.f.: 1 - 24*sum(k>=1, k*x^k/(1 - x^k)).
G.f.: 1 + 24 *x*deriv(eta(x))/eta(x) where eta(x) = prod(n>=1, 1-x^n); (cf. A000203). - Joerg Arndt, Sep 28 2012
G.f.: 1 - 24*x/(1-x) + 48*x^2/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+1)*(k+3)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: q*Delta'/Delta where Delta is the generating function of Ramanujan's tau function (A000594). - Seiichi Manyama, Jul 15 2017
EXAMPLE
G.f. = 1 - 24*x - 72*x^2 - 96*x^3 - 168*x^4 - 144*x^5 - 288*x^6 + ...
MAPLE
E := proc(k) local n, t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..60); series(t1, q, 60); end; E(2);
MATHEMATICA
a[n_] := -24*DivisorSigma[1, n]; a[0] = 1; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Dec 12 2012 *)
a[ n_] := If[ n < 1, Boole[n == 0], -24 DivisorSigma[ 1, n]]; (* Michael Somos, Apr 08 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, -24 * sigma(n))}; /* Michael Somos, Apr 09 2003 */
(Python)
from sympy import divisor_sigma
def a(n): return 1 if n == 0 else -24 * divisor_sigma(n)
[a(n) for n in range(51)] # Indranil Ghosh, Jul 15 2017
CROSSREFS
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A000594 (Delta), A076835, A145155 (Delta').
KEYWORD
sign,easy,nice
STATUS
approved

Search completed in 0.005 seconds