Displaying 1-10 of 35 results found.
Sorted positions of first appearances in A368109 (number of ways to choose a binary index of each binary index).
+20
9
1, 4, 20, 52, 64, 68, 84, 116, 308, 372, 820, 884, 1088, 1092, 1108, 1140, 1396, 1908, 2868, 2932, 3956, 5184, 5188, 5204, 5236, 5492, 6004, 8052, 13376, 13380, 13396, 13428, 13684, 14196, 16244, 17204, 17268, 18292, 19252, 19316, 20340, 22388, 24436, 30580
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Tuples[bpe/@bpe[n]]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
Sorted positions of first appearances in A368109.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A072639, A253317, A326031, A326702, A326753, A355741, A367771, A367905, A367906, A367911, A368184.
Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.
+10
27
1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
EXAMPLE
The a(0) = 1 through a(4) = 14 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{1,3,4}
{2,3,4}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#], UnsameQ@@#&]!={}&]], {n, 0, 10}]
CROSSREFS
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
Number of multisets that can be obtained by choosing a binary index of each binary index of n.
+10
22
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 3, 3, 3, 3, 5, 5, 5, 5, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
The run-lengths are all 4 or 8.
EXAMPLE
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with multiset choices {1,1,2}, {1,1,3}, {1,2,2}, {1,2,3}, {1,3,3}, {2,2,3}, {2,3,3}, so a(52) = 7.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n, 0, 100}]
CROSSREFS
The version for multisets and divisors is A355733, for sequences A355731.
Choosing a sequence instead of multiset gives A368109, firsts A368111.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A072639, A309326, A326031, A326702, A326753, A355735, A355739, A355740, A355745, A367771, A367906.
Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.
+10
20
0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
EXAMPLE
The a(0) = 0 through a(5) = 8 subsets:
. . . {1,2,3} {1,2,3} {1,2,3}
{1,2,3,4} {1,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#], UnsameQ@@#&]=={}&]], {n, 0, 10}]
CROSSREFS
Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
Cf. A000612, A072639, A355739, A355740, A367772, A367905, A367909, A367912, A368094, A368095, A368109.
Indices in A261283 where records occur.
+10
15
0, 1, 2, 3, 8, 9, 10, 11, 128, 129, 130, 131, 136, 137, 138, 139, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 2147483648, 2147483649, 2147483650, 2147483651, 2147483656, 2147483657
COMMENTS
These are numbers whose binary indices are all powers of 2, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, the terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
130: 10000010 ~ {2,8}
131: 10000011 ~ {1,2,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
138: 10001010 ~ {2,4,8}
139: 10001011 ~ {1,2,4,8}
(End)
FORMULA
G.f.: 1/(1-x) * Sum_{k>=0} (2^(-1+2^k))*x^2^k/(1+x^2^k). - John Tyler Rascoe, May 22 2024
MAPLE
a := proc(n) local k, A:
A := [seq(0, i=1..n)]: A[1]:=0:
for k from 1 to n-1 do
A[k+1] := A[k-2^ilog2(k)+1]+2^(2^ilog2(k)-1): od:
# second Maple program:
a:= n-> (l-> add(l[i+1]*2^(2^i-1), i=0..nops(l)-1))(Bits[Split](n-1)):
MATHEMATICA
Nest[Append[#1, #1[[-#2]] + 2^(#2 - 1)] & @@ {#, 2^(IntegerLength[Length[#], 2] - 1)} &, {0, 1}, 36] (* Michael De Vlieger, May 08 2020 *)
PROG
(PARI) a(n)={if(n<=1, 0, my(t=1<<logint(n-1, 2)); a(n-t) + 2^(t-1))} \\ Andrew Howroyd, Dec 20 2019
CROSSREFS
Cf. A053644 (most significant bit).
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A058891, A062050, A072639, A326031, A326675, A326702, A367771, A367912, A368183, A368109, A368531.
Number of subsets of {1..n} such that a unique set can be obtained by choosing a different binary index of each element.
+10
15
1, 2, 4, 6, 12, 19, 30, 45, 90, 147, 230, 343, 504, 716, 994, 1352, 2704, 4349, 6469
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
EXAMPLE
The set {3,4} has binary indices {{1,2},{3}}, with two choices {1,3}, {2,3}, so is not counted under a(4).
The a(0) = 1 through a(5) = 19 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{1,2} {1,2} {4} {4}
{1,3} {1,2} {1,2}
{2,3} {1,3} {1,3}
{1,4} {1,4}
{2,3} {1,5}
{2,4} {2,3}
{1,2,4} {2,4}
{1,3,4} {4,5}
{2,3,4} {1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n]], Length[Union[Sort /@ Select[Tuples[bpe/@#], UnsameQ@@#&]]]==1&]], {n, 0, 10}]
CROSSREFS
A version for MM-numbers of multisets is A368101.
Factorizations of this type are counted by A370645.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Number of connected components of the prime indices of the binary indices of n.
+10
14
1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
EXAMPLE
The prime indices of binary indices of 281492156579880 are {{1,1},{1,2},{3,4},{4,4}}, with 2 connected components {{1,1},{1,2}} and {{3,4},{4,4}}, so a(281492156579880) = 2.
MATHEMATICA
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[csm[prix/@bix[n]]], {n, 100}]
CROSSREFS
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
Cf. A000720, A019565, A087086, A096111, A325097, A326782, A368109, A371292, A371294, A371445, A371447.
Sorted positions of first appearances in A367905.
+10
13
1, 4, 7, 20, 68, 320, 352, 1088, 3136, 5184, 13376, 16704, 17472, 70720, 82240, 83008, 90112, 90176
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
7: {{1},{2},{1,2}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
352: {{2,3},{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
3136: {{1,2,3},{1,2,4},{3,4}}
5184: {{1,2,3},{1,2,4},{1,3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16704: {{1,2,3},{1,4},{1,2,3,4}}
17472: {{1,2,3},{1,2,4},{1,2,3,4}}
70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
Sorted positions of first appearances in A367905.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A072639, A309326, A326031, A326702, A326753, A367902, A367906, A367907, A367912, A368109, A368183.
Least number k such that there are exactly n ways to choose a different binary index of each binary index of k.
+10
12
7, 1, 4, 20, 68, 320, 352, 1088, 3136, 13376, 16704, 5184, 82240, 70720, 17472
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
352: {{2,3},{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
3136: {{1,2,3},{1,2,4},{3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16704: {{1,2,3},{1,4},{1,2,3,4}}
5184: {{1,2,3},{1,2,4},{1,3,4}}
82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 1000}];
spnm[y_]:=Max@@NestWhile[Most, y, Union[#]!=Range[0, Max@@#]&];
Table[Position[c, n][[1, 1]], {n, 0, spnm[c]}]
CROSSREFS
Positions of first appearances in A367905.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.
+10
12
1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A029837(n) elements of {1..n} such that it is possible to choose a different binary index of each.
EXAMPLE
The a(0) = 1 through a(6) = 17 subsets:
{} {1} {1,2} {1,2} {1,2,4} {1,2,4} {1,2,4}
{1,3} {1,3,4} {1,2,5} {1,2,5}
{2,3} {2,3,4} {1,3,4} {1,2,6}
{1,3,5} {1,3,4}
{2,3,4} {1,3,5}
{2,3,5} {1,3,6}
{2,4,5} {1,4,6}
{3,4,5} {1,5,6}
{2,3,4}
{2,3,5}
{2,3,6}
{2,4,5}
{2,5,6}
{3,4,5}
{3,4,6}
{3,5,6}
{4,5,6}
The a(0) = 1 through a(6) = 17 set-systems:
{1} {1}{2} {1}{2} {1}{2}{3} {1}{2}{3} {1}{2}{3}
{1}{12} {1}{12}{3} {1}{12}{3} {1}{12}{3}
{2}{12} {2}{12}{3} {1}{2}{13} {1}{2}{13}
{2}{12}{3} {1}{2}{23}
{2}{3}{13} {1}{3}{23}
{1}{12}{13} {2}{12}{3}
{12}{3}{13} {2}{3}{13}
{2}{12}{13} {1}{12}{13}
{1}{12}{23}
{1}{13}{23}
{12}{3}{13}
{12}{3}{23}
{2}{12}{13}
{2}{12}{23}
{2}{13}{23}
{3}{13}{23}
{12}{13}{23}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n], {IntegerLength[n, 2]}], Select[Tuples[bpe/@#], UnsameQ@@#&]!={}&]], {n, 0, 10}]
CROSSREFS
The case of a unique choice is A370638.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
Search completed in 0.022 seconds
|