Displaying 1-9 of 9 results found.
page
1
Number of ways to choose a binary index of each binary index of n.
+10
35
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 3, 3, 3, 3, 6, 6, 6, 6, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
Run-lengths are all 4 or 8.
EXAMPLE
The binary indices of binary indices of 20 are {{1,2},{1,3}}, with choices (1,1), (1,3), (2,1), (2,3), so a(20) = 4.
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,1,1), (1,1,3), (1,3,2), (1,3,3), (2,1,2), (2,1,3), (2,3,2), (2,3,3), so a(52) = 8.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Tuples[bpe/@bpe[n]]], {n, 0, 100}]
CROSSREFS
All entries appear to belong to A003586.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A072639, A309326, A326031, A326702, A326753, A355731, A355739, A367771, A367905, A367906, A367915.
Sorted positions of first appearances in A367905.
+10
13
1, 4, 7, 20, 68, 320, 352, 1088, 3136, 5184, 13376, 16704, 17472, 70720, 82240, 83008, 90112, 90176
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
7: {{1},{2},{1,2}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
352: {{2,3},{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
3136: {{1,2,3},{1,2,4},{3,4}}
5184: {{1,2,3},{1,2,4},{1,3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16704: {{1,2,3},{1,4},{1,2,3,4}}
17472: {{1,2,3},{1,2,4},{1,2,3,4}}
70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
Sorted positions of first appearances in A367905.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A072639, A309326, A326031, A326702, A326753, A367902, A367906, A367907, A367912, A368109, A368183.
Least number k such that there are exactly n ways to choose a different binary index of each binary index of k.
+10
12
7, 1, 4, 20, 68, 320, 352, 1088, 3136, 13376, 16704, 5184, 82240, 70720, 17472
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
352: {{2,3},{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
3136: {{1,2,3},{1,2,4},{3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16704: {{1,2,3},{1,4},{1,2,3,4}}
5184: {{1,2,3},{1,2,4},{1,3,4}}
82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 1000}];
spnm[y_]:=Max@@NestWhile[Most, y, Union[#]!=Range[0, Max@@#]&];
Table[Position[c, n][[1, 1]], {n, 0, spnm[c]}]
CROSSREFS
Positions of first appearances in A367905.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Least number k such that there are exactly n ways to choose a multiset consisting of a binary index of each binary index of k.
+10
10
1, 4, 64, 20, 68, 320, 52, 84, 16448, 324, 832, 116, 1104, 308, 816, 340, 836, 848, 1108, 1136, 1360, 3152, 16708, 372, 5188, 5216, 852, 880, 2884, 1364, 13376, 1392, 3184, 3424, 17220, 5204, 5220, 2868, 5728, 884, 19536, 66896, 2900, 1396, 21572, 3188, 3412
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
64: {{1,2,3}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
52: {{1,2},{1,3},{2,3}}
84: {{1,2},{1,3},{1,2,3}}
16448: {{1,2,3},{1,2,3,4}}
324: {{1,2},{1,2,3},{1,4}}
832: {{1,2,3},{1,4},{2,4}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
spnm[y_]:=Max@@NestWhile[Most, y, Union[#]!=Range[0, Max@@#]&];
c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n, 1000}];
Table[Position[c, n][[1, 1]], {n, spnm[c]}]
CROSSREFS
A version for multisets and divisors is A355734.
Positions of first appearances in A367912.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Sorted positions of first appearances in A367912 (number of multisets that can be obtained by choosing a binary index of each binary index).
+10
10
1, 4, 20, 52, 64, 68, 84, 116, 308, 320, 324, 340, 372, 816, 832, 836, 848, 852, 880, 884, 1104, 1108, 1136, 1360, 1364, 1392, 1396, 1904, 1908, 2868, 2884, 2900, 2932, 3152, 3184, 3188, 3412, 3424, 3440, 3444, 3952, 3956, 5188, 5204, 5216, 5220, 5236, 5476
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
324: {{1,2},{1,2,3},{1,4}}
340: {{1,2},{1,3},{1,2,3},{1,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n, 10000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
A version for multisets and divisors is A355734.
Sorted positions of first appearances in A367912, for sequences A368109.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A072639, A309326, A326031, A326702, A326749, A326753, A355733, A355744, A367905, A367906, A367911, A368112, A368185.
Least k such that there are exactly A003586(n) ways to choose a binary index of each binary index of k.
+10
9
1, 4, 64, 20, 68, 52, 1088, 84, 308, 1092, 116, 5184, 820, 1108, 372, 5188, 2868, 1140, 13376, 884, 5204, 17204, 1396, 13380, 2932, 5236, 275520, 19252, 1908, 13396, 17268, 5492, 275524, 84788, 3956, 13428, 1324096, 19316, 6004, 275540, 215860, 18292, 13684
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
64: {{1,2,3}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
52: {{1,2},{1,3},{2,3}}
84: {{1,2},{1,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}}
MATHEMATICA
nn=10000;
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
dd=Select[Range[nn], Max@@First/@FactorInteger[#]<=3&];
qq=Table[Length[Tuples[bpe/@bpe[n]]], {n, nn}];
kk=Select[Range[Length[dd]], SubsetQ[qq, Take[dd, #]]&]
Table[Position[qq, dd[[n]]][[1, 1]], {n, kk}]
CROSSREFS
Positions of first appearances in A368109.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Number of sets that can be obtained by choosing a different binary index of each binary index of n.
+10
8
1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 3, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,3,2), (2,1,3), both permutations of {1,2,3}, so a(52) = 1.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, 0, 100}]
CROSSREFS
Positions of positive terms are A367906.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Least k such that there are exactly n ways to choose a set consisting of a different binary index of each binary index of k.
+10
7
7, 1, 4, 20, 276, 320, 1088, 65856, 66112, 66624, 263232
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
276: {{1,2},{1,3},{1,4}}
320: {{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
65856: {{1,2,3},{1,4},{1,5}}
66112: {{1,2,3},{2,4},{1,5}}
66624: {{1,2,3},{1,2,4},{1,5}}
MATHEMATICA
nn=10000;
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
q=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, nn}];
k=Max@@Select[Range[Max@@q], SubsetQ[q, Range[#]]&]
Table[Position[q, n][[1, 1]], {n, 0, k}]
CROSSREFS
Positions of first appearances in A368183.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Sorted list of positions of first appearances in A368183 (number of sets that can be obtained by choosing a different binary index of each binary index).
+10
6
1, 4, 7, 20, 276, 320, 1088, 65856, 66112, 66624
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
7: {{1},{2},{1,2}}
20: {{1,2},{1,3}}
276: {{1,2},{1,3},{1,4}}
320: {{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
65856: {{1,2,3},{1,4},{1,5}}
66112: {{1,2,3},{2,4},{1,5}}
66624: {{1,2,3},{1,2,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
Sorted list of positions of first appearances in A368183.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Search completed in 0.068 seconds
|