[go: up one dir, main page]

login
Search: a368112 -id:a368112
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to choose a binary index of each binary index of n.
+10
35
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 3, 3, 3, 3, 6, 6, 6, 6, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12
OFFSET
0,5
COMMENTS
First differs from A367912 at a(52) = 8, A367912(52) = 7.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
Run-lengths are all 4 or 8.
FORMULA
a(n) = Product_{k in A048793(n)} A000120(k).
EXAMPLE
The binary indices of binary indices of 20 are {{1,2},{1,3}}, with choices (1,1), (1,3), (2,1), (2,3), so a(20) = 4.
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,1,1), (1,1,3), (1,3,2), (1,3,3), (2,1,2), (2,1,3), (2,3,2), (2,3,3), so a(52) = 8.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Tuples[bpe/@bpe[n]]], {n, 0, 100}]
CROSSREFS
All entries appear to belong to A003586.
Positions of ones are A253317.
The version for prime indices is A355741, for multisets A355744.
Choosing a multiset (not sequence) gives A367912, firsts A367913.
Positions of first appearances are A368111, sorted A368112.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 12 2023
STATUS
approved
Sorted positions of first appearances in A367905.
+10
13
1, 4, 7, 20, 68, 320, 352, 1088, 3136, 5184, 13376, 16704, 17472, 70720, 82240, 83008, 90112, 90176
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
7: {{1},{2},{1,2}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
352: {{2,3},{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
3136: {{1,2,3},{1,2,4},{3,4}}
5184: {{1,2,3},{1,2,4},{1,3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16704: {{1,2,3},{1,4},{1,2,3,4}}
17472: {{1,2,3},{1,2,4},{1,2,3,4}}
70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
Sorted positions of first appearances in A367905.
The unsorted version is A367910.
Multisets without distinctness are A367915, unsorted A367913.
Without distinctness we have A368112, unsorted A368111.
For sets instead of sequences we have A368185, unsorted A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 16 2023
STATUS
approved
Least number k such that there are exactly n ways to choose a different binary index of each binary index of k.
+10
12
7, 1, 4, 20, 68, 320, 352, 1088, 3136, 13376, 16704, 5184, 82240, 70720, 17472
OFFSET
0,1
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
352: {{2,3},{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
3136: {{1,2,3},{1,2,4},{3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16704: {{1,2,3},{1,4},{1,2,3,4}}
5184: {{1,2,3},{1,2,4},{1,3,4}}
82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 1000}];
spnm[y_]:=Max@@NestWhile[Most, y, Union[#]!=Range[0, Max@@#]&];
Table[Position[c, n][[1, 1]], {n, 0, spnm[c]}]
CROSSREFS
Positions of first appearances in A367905.
The sorted version is A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
Not requiring distinctness gives A368111, firsts of A368109, sorted A368112.
For multisets of indices we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 16 2023
STATUS
approved
Least number k such that there are exactly n ways to choose a multiset consisting of a binary index of each binary index of k.
+10
10
1, 4, 64, 20, 68, 320, 52, 84, 16448, 324, 832, 116, 1104, 308, 816, 340, 836, 848, 1108, 1136, 1360, 3152, 16708, 372, 5188, 5216, 852, 880, 2884, 1364, 13376, 1392, 3184, 3424, 17220, 5204, 5220, 2868, 5728, 884, 19536, 66896, 2900, 1396, 21572, 3188, 3412
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
64: {{1,2,3}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
52: {{1,2},{1,3},{2,3}}
84: {{1,2},{1,3},{1,2,3}}
16448: {{1,2,3},{1,2,3,4}}
324: {{1,2},{1,2,3},{1,4}}
832: {{1,2,3},{1,4},{2,4}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
spnm[y_]:=Max@@NestWhile[Most, y, Union[#]!=Range[0, Max@@#]&];
c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n, 1000}];
Table[Position[c, n][[1, 1]], {n, spnm[c]}]
CROSSREFS
A version for multisets and divisors is A355734.
With distinctness we have A367910, firsts of A367905, sorted A367911.
Positions of first appearances in A367912.
The sorted version is A367915.
For sequences we have A368111, firsts of A368109, sorted A368112.
For sets we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 16 2023
STATUS
approved
Sorted positions of first appearances in A367912 (number of multisets that can be obtained by choosing a binary index of each binary index).
+10
10
1, 4, 20, 52, 64, 68, 84, 116, 308, 320, 324, 340, 372, 816, 832, 836, 848, 852, 880, 884, 1104, 1108, 1136, 1360, 1364, 1392, 1396, 1904, 1908, 2868, 2884, 2900, 2932, 3152, 3184, 3188, 3412, 3424, 3440, 3444, 3952, 3956, 5188, 5204, 5216, 5220, 5236, 5476
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
324: {{1,2},{1,2,3},{1,4}}
340: {{1,2},{1,3},{1,2,3},{1,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n, 10000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
A version for multisets and divisors is A355734.
Sorted positions of first appearances in A367912, for sequences A368109.
The unsorted version is A367913.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 16 2023
STATUS
approved
Least k such that there are exactly A003586(n) ways to choose a binary index of each binary index of k.
+10
9
1, 4, 64, 20, 68, 52, 1088, 84, 308, 1092, 116, 5184, 820, 1108, 372, 5188, 2868, 1140, 13376, 884, 5204, 17204, 1396, 13380, 2932, 5236, 275520, 19252, 1908, 13396, 17268, 5492, 275524, 84788, 3956, 13428, 1324096, 19316, 6004, 275540, 215860, 18292, 13684
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
64: {{1,2,3}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
52: {{1,2},{1,3},{2,3}}
84: {{1,2},{1,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}}
MATHEMATICA
nn=10000;
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
dd=Select[Range[nn], Max@@First/@FactorInteger[#]<=3&];
qq=Table[Length[Tuples[bpe/@bpe[n]]], {n, nn}];
kk=Select[Range[Length[dd]], SubsetQ[qq, Take[dd, #]]&]
Table[Position[qq, dd[[n]]][[1, 1]], {n, kk}]
CROSSREFS
With distinctness we have A367910, sorted A367911, firsts of A367905.
For multisets we have A367913, sorted A367915, firsts of A367912.
Positions of first appearances in A368109.
The sorted version is A368112.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2023
STATUS
approved
Number of sets that can be obtained by choosing a different binary index of each binary index of n.
+10
8
1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 3, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0
OFFSET
0,5
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,3,2), (2,1,3), both permutations of {1,2,3}, so a(52) = 1.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, 0, 100}]
CROSSREFS
For sequences we have A367905, firsts A367910, sorted A367911.
Positions of zeros are A367907.
Without distinctness we have A367912, firsts A367913, sorted A367915.
Positions of positive terms are A367906.
For sequences without distinctness: A368109, firsts A368111, sorted A368112.
Positions of first appearances are A368184, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2023
STATUS
approved
Least k such that there are exactly n ways to choose a set consisting of a different binary index of each binary index of k.
+10
7
7, 1, 4, 20, 276, 320, 1088, 65856, 66112, 66624, 263232
OFFSET
0,1
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
276: {{1,2},{1,3},{1,4}}
320: {{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
65856: {{1,2,3},{1,4},{1,5}}
66112: {{1,2,3},{2,4},{1,5}}
66624: {{1,2,3},{1,2,4},{1,5}}
MATHEMATICA
nn=10000;
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
q=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, nn}];
k=Max@@Select[Range[Max@@q], SubsetQ[q, Range[#]]&]
Table[Position[q, n][[1, 1]], {n, 0, k}]
CROSSREFS
For strict sequences: A367910, firsts of A367905, sorted A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
For sequences w/o distinctness: A368111, firsts of A368109, sorted A368112.
Positions of first appearances in A368183.
The sorted version is A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 18 2023
STATUS
approved
Sorted list of positions of first appearances in A368183 (number of sets that can be obtained by choosing a different binary index of each binary index).
+10
6
1, 4, 7, 20, 276, 320, 1088, 65856, 66112, 66624
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
7: {{1},{2},{1,2}}
20: {{1,2},{1,3}}
276: {{1,2},{1,3},{1,4}}
320: {{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
65856: {{1,2,3},{1,4},{1,5}}
66112: {{1,2,3},{2,4},{1,5}}
66624: {{1,2,3},{1,2,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
For sequences we have A367911, unsorted A367910, firsts of A367905.
Multisets w/o distinctness: A367915, unsorted A367913, firsts of A367912.
Sequences w/o distinctness: A368112, unsorted A368111, firsts of A368109.
Sorted list of positions of first appearances in A368183.
The unsorted version is A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 18 2023
STATUS
approved

Search completed in 0.068 seconds