proposed
approved
proposed
approved
editing
proposed
allocated for Gus WisemanSorted positions of first appearances in A368109 (number of ways to choose a binary index of each binary index).
1, 4, 20, 52, 64, 68, 84, 116, 308, 372, 820, 884, 1088, 1092, 1108, 1140, 1396, 1908, 2868, 2932, 3956, 5184, 5188, 5204, 5236, 5492, 6004, 8052, 13376, 13380, 13396, 13428, 13684, 14196, 16244, 17204, 17268, 18292, 19252, 19316, 20340, 22388, 24436, 30580
1,2
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}}
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Tuples[bpe/@bpe[n]]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
Choosing multisets instead of sequences gives A367915, firsts of A367912, unsorted A367913.
Sorted positions of first appearances in A368109.
The unsorted version is A368111.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf. A072639, A253317, `A309326, A326031, A326702, `A326753, `A355731, ~A355739, A355741, `A355744, A367771, A367905, `A367906, A367911, A368184.
allocated
nonn
Gus Wiseman, Dec 17 2023
approved
editing
allocated for Gus Wiseman
allocated
approved