Displaying 1-10 of 20 results found.
Number of non-condensed integer factorizations of n into unordered factors > 1.
+10
31
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
COMMENTS
A multiset is condensed iff it is possible to choose a different divisor of each element.
EXAMPLE
The a(96) = 4 factorizations: (2*2*2*2*2*3), (2*2*2*2*6), (2*2*2*3*4), (2*2*2*12).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min @@ #>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Length[Select[Tuples[Divisors /@ #], UnsameQ@@#&]]==0&]], {n, 100}]
CROSSREFS
A355731 counts choices of a divisor of each prime index, firsts A355732.
Number of condensed integer factorizations of n into unordered factors > 1.
+10
29
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
COMMENTS
A multiset is condensed iff it is possible to choose a different divisor of each element.
EXAMPLE
The a(36) = 7 factorizations: (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), (6*6), (36).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min @@ #>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Length[Select[Tuples[Divisors /@ #], UnsameQ@@#&]]>0&]], {n, 100}]
CROSSREFS
A355731 counts choices of a divisor of each prime index, firsts A355732.
Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.
+10
27
1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
EXAMPLE
The a(0) = 1 through a(4) = 14 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{1,3,4}
{2,3,4}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#], UnsameQ@@#&]!={}&]], {n, 0, 10}]
CROSSREFS
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element.
+10
25
0, 1, 2, 4, 10, 20, 44, 88, 204, 440, 908, 1816, 3776, 7552, 15364, 31240, 63744, 127488, 257592, 515184, 1036336, 2079312, 4166408, 8332816, 16709632, 33470464, 66978208, 134067488, 268236928, 536473856, 1073233840, 2146467680, 4293851680, 8588355424, 17177430640
EXAMPLE
The a(0) = 0 through a(5) = 20 subsets:
. {1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{1,2,3} {1,4} {1,4}
{2,4} {1,5}
{1,2,3} {2,4}
{1,2,4} {1,2,3}
{1,3,4} {1,2,4}
{2,3,4} {1,2,5}
{1,2,3,4} {1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1, {}, First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]], {n, 0, 10}]
CROSSREFS
For non-isomorphic multiset partitions we have A368097, complement A368098.
The complement is counted by A370582.
For a unique choice we have A370584.
For binary indices instead of factors we have A370637, complement A370636.
A355741 counts choices of a prime factor of each prime index.
Cf. A000040, A000720, A001055, A001414, A003963, A005117, A045778, A355739, A355745, A367867, A367905, A368187.
Number of maximal subsets of {1..n} such that it is possible to choose a different prime factor of each element.
+10
22
1, 1, 1, 1, 2, 2, 5, 5, 7, 11, 25, 25, 38, 38, 84, 150, 178, 178, 235, 235, 341, 579, 1235, 1235
COMMENTS
First differs from A307984 at a(21) = 579, A307984(21) = 578. The difference is due to the set {10,11,13,14,15,17,19,21}, which is not a basis because log(10) + log(21) = log(14) + log(15).
Also length-pi(n) subsets of {1..n} such that it is possible to choose a different prime factor of each element.
EXAMPLE
The a(0) = 1 through a(8) = 7 subsets:
{} {} {2} {2,3} {2,3} {2,3,5} {2,3,5} {2,3,5,7} {2,3,5,7}
{3,4} {3,4,5} {2,5,6} {2,5,6,7} {2,5,6,7}
{3,4,5} {3,4,5,7} {3,4,5,7}
{3,5,6} {3,5,6,7} {3,5,6,7}
{4,5,6} {4,5,6,7} {3,5,7,8}
{4,5,6,7}
{5,6,7,8}
MATHEMATICA
Table[Length[Select[Subsets[Range[n], {PrimePi[n]}], Length[Select[Tuples[If[#==1, {}, First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]], {n, 0, 10}]
CROSSREFS
Factorizations of this type are counted by A368414, complement A368413.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
Cf. A000040, A000720, A005117, A045778, A133686, A333331, A355739, A355740, A355744, A355745, A367905, A368110.
Number of subsets of {1..n} such that it is possible to choose a different prime factor of each element.
+10
21
1, 1, 2, 4, 6, 12, 20, 40, 52, 72, 116, 232, 320, 640, 1020, 1528, 1792, 3584, 4552, 9104, 12240, 17840, 27896, 55792, 67584, 83968, 130656, 150240, 198528, 397056, 507984, 1015968, 1115616, 1579168, 2438544, 3259680, 3730368, 7460736, 11494656, 16145952, 19078464, 38156928
EXAMPLE
The a(0) = 1 through a(6) = 20 subsets:
{} {} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {2,6}
{4,5} {3,4}
{2,3,5} {3,5}
{3,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,3,5}
{2,5,6}
{3,4,5}
{3,5,6}
{4,5,6}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1, {}, First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]], {n, 0, 10}]
CROSSREFS
For unlabeled multiset partitions we have A368098, complement A368097.
The complement is counted by A370583.
For a unique choice we have A370584.
For binary indices instead of factors we have A370636, complement A370637.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
Cf. A000040, A000720, A001055, A001414, A003963, A005117, A045778, A133686, A355739, A355744, A355745, A367905.
Number of subsets of {1..n} such that only one set can be obtained by choosing a different prime factor of each element.
+10
21
1, 1, 2, 4, 6, 12, 18, 36, 48, 68, 104, 208, 284, 568, 888, 1296, 1548, 3096, 3968
COMMENTS
For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3).
EXAMPLE
The a(0) = 1 through a(6) = 18 subsets:
{} {} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {2,3}
{2,5} {2,5}
{3,4} {2,6}
{3,5} {3,4}
{4,5} {3,5}
{2,3,5} {3,6}
{3,4,5} {4,5}
{4,6}
{2,3,5}
{2,5,6}
{3,4,5}
{3,5,6}
{4,5,6}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Length[Union[Sort/@Select[Tuples[If[#==1, {}, First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]], {n, 0, 10}]
CROSSREFS
Maximal sets of this type are counted by A370585.
A355741 counts ways to choose a prime factor of each prime index.
Cf. A000040, A000720, A003963, A005117, A045778, A133686, A307984, A355739, A355744, A355745, A367905.
Number of integer partitions of n such that only one set can be obtained by choosing a different prime factor of each part.
+10
16
1, 0, 1, 1, 1, 2, 0, 3, 3, 4, 3, 4, 5, 5, 8, 10, 11, 7, 14, 13, 19, 23, 24, 20, 30, 33, 40, 47, 49, 55, 53, 72, 80, 90, 92, 110, 110, 132, 154, 169, 180, 201, 218, 246, 281, 302, 323, 348, 396, 433, 482, 530, 584, 618, 670, 754, 823, 903, 980, 1047, 1137
EXAMPLE
The partition (10,6,4) has unique choice (5,3,2) so is counted under a(20).
The a(0) = 1 through a(12) = 5 partitions:
() . (2) (3) (4) (5) . (7) (8) (9) (6,4) (11) (6,6)
(3,2) (4,3) (5,3) (5,4) (7,3) (7,4) (7,5)
(5,2) (6,2) (6,3) (5,3,2) (8,3) (10,2)
(7,2) (9,2) (5,4,3)
(7,3,2)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[Union[Sort/@Select[Tuples[If[#==1, {}, First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]], {n, 0, 30}]
CROSSREFS
Maximal sets of this type are counted by A370585.
For divisors instead of factors we have A370595.
These partitions have ranks A370647.
A355741 counts ways to choose a prime factor of each prime index.
Number of subsets of {1..n} such that a unique set can be obtained by choosing a different binary index of each element.
+10
15
1, 2, 4, 6, 12, 19, 30, 45, 90, 147, 230, 343, 504, 716, 994, 1352, 2704, 4349, 6469
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
EXAMPLE
The set {3,4} has binary indices {{1,2},{3}}, with two choices {1,3}, {2,3}, so is not counted under a(4).
The a(0) = 1 through a(5) = 19 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{1,2} {1,2} {4} {4}
{1,3} {1,2} {1,2}
{2,3} {1,3} {1,3}
{1,4} {1,4}
{2,3} {1,5}
{2,4} {2,3}
{1,2,4} {2,4}
{1,3,4} {4,5}
{2,3,4} {1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n]], Length[Union[Sort /@ Select[Tuples[bpe/@#], UnsameQ@@#&]]]==1&]], {n, 0, 10}]
CROSSREFS
A version for MM-numbers of multisets is A368101.
Factorizations of this type are counted by A370645.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.
+10
12
1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A029837(n) elements of {1..n} such that it is possible to choose a different binary index of each.
EXAMPLE
The a(0) = 1 through a(6) = 17 subsets:
{} {1} {1,2} {1,2} {1,2,4} {1,2,4} {1,2,4}
{1,3} {1,3,4} {1,2,5} {1,2,5}
{2,3} {2,3,4} {1,3,4} {1,2,6}
{1,3,5} {1,3,4}
{2,3,4} {1,3,5}
{2,3,5} {1,3,6}
{2,4,5} {1,4,6}
{3,4,5} {1,5,6}
{2,3,4}
{2,3,5}
{2,3,6}
{2,4,5}
{2,5,6}
{3,4,5}
{3,4,6}
{3,5,6}
{4,5,6}
The a(0) = 1 through a(6) = 17 set-systems:
{1} {1}{2} {1}{2} {1}{2}{3} {1}{2}{3} {1}{2}{3}
{1}{12} {1}{12}{3} {1}{12}{3} {1}{12}{3}
{2}{12} {2}{12}{3} {1}{2}{13} {1}{2}{13}
{2}{12}{3} {1}{2}{23}
{2}{3}{13} {1}{3}{23}
{1}{12}{13} {2}{12}{3}
{12}{3}{13} {2}{3}{13}
{2}{12}{13} {1}{12}{13}
{1}{12}{23}
{1}{13}{23}
{12}{3}{13}
{12}{3}{23}
{2}{12}{13}
{2}{12}{23}
{2}{13}{23}
{3}{13}{23}
{12}{13}{23}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n], {IntegerLength[n, 2]}], Select[Tuples[bpe/@#], UnsameQ@@#&]!={}&]], {n, 0, 10}]
CROSSREFS
The case of a unique choice is A370638.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
Search completed in 0.089 seconds
|