Displaying 1-8 of 8 results found.
page
1
Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.
+10
26
1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
COMMENTS
When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)* A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
MATHEMATICA
Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
PROG
(PARI) A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, , if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
(PARI)
A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
A276084(n) = { for(i=1, oo, if(n%prime(i), return(i-1))); }
CROSSREFS
Cf. A002110, A002182, A111701, A181815, A181817, A181819, A181821, A276084, A304886, A319626, A319627, A328478, A328479, A329889, A329902, A330685, A330686, A330689.
Product of primes at even positions in the weakly increasing list (with multiplicity) of prime factors of n.
+10
17
1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 2, 1, 7, 5, 4, 1, 3, 1, 2, 7, 11, 1, 6, 5, 13, 3, 2, 1, 3, 1, 4, 11, 17, 7, 6, 1, 19, 13, 10, 1, 3, 1, 2, 3, 23, 1, 4, 7, 5, 17, 2, 1, 9, 11, 14, 19, 29, 1, 10, 1, 31, 3, 8, 13, 3, 1, 2, 23, 5, 1, 6, 1, 37, 5, 2, 11, 3, 1, 4, 9
EXAMPLE
The prime factors of 108 are (2,2,3,3,3), with even bisection (2,3), with product 6, so a(108) = 6.
The prime factors of 720 are (2,2,2,2,3,3,5), with even bisection (2,2,3), with product 12, so a(720) = 12.
MAPLE
f:= proc(n) local F, i;
F:= ifactors(n)[2];
F:= sort(map(t -> t[1]$t[2], F));
mul(F[i], i=2..nops(F), 2)
end proc:
MATHEMATICA
Table[Times@@Last/@Partition[Flatten[Apply[ConstantArray, FactorInteger[n], {1}]], 2], {n, 100}]
CROSSREFS
Positions of first appearances are A129597.
The sum of prime indices of a(n) is A346698(n).
A001221 counts distinct prime factors.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346633 adds up the even bisection of standard compositions.
Cf. A026424, A035363, A209281, A236913, A342768, A344653, A345957, A345958, A345960, A345961, A345962.
Product of primes at odd positions in the weakly increasing list (with multiplicity) of prime factors of n.
+10
15
1, 2, 3, 2, 5, 2, 7, 4, 3, 2, 11, 6, 13, 2, 3, 4, 17, 6, 19, 10, 3, 2, 23, 4, 5, 2, 9, 14, 29, 10, 31, 8, 3, 2, 5, 6, 37, 2, 3, 4, 41, 14, 43, 22, 15, 2, 47, 12, 7, 10, 3, 26, 53, 6, 5, 4, 3, 2, 59, 6, 61, 2, 21, 8, 5, 22, 67, 34, 3, 14, 71, 12, 73, 2, 15, 38
EXAMPLE
The prime factors of 108 are (2,2,3,3,3), with odd bisection (2,3,3), with product 18, so a(108) = 18.
The prime factors of 720 are (2,2,2,2,3,3,5), with odd bisection (2,2,3,5), with product 60, so a(720) = 60.
MATHEMATICA
Table[Times@@First/@Partition[Append[Flatten[Apply[ConstantArray, FactorInteger[n], {1}]], 0], 2], {n, 100}]
CROSSREFS
The even reverse version appears to be A329888.
Positions of first appearances are A342768.
A001221 counts distinct prime factors.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A209281 (shifted) adds up the odd bisection of standard compositions.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346633 adds up the even bisection of standard compositions.
A346698 gives the sum of the even bisection of prime indices.
A346700 gives the sum of the even bisection of reversed prime indices.
Cf. A025047, A027187, A027193, A053738, A097805, A106356, A341446, A344653, A345957, A345958, A345959.
Sum of the even bisection (even-indexed parts) of the integer partition with Heinz number n.
+10
14
0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 0, 2, 3, 1, 2, 1, 0, 2, 0, 2, 2, 1, 3, 3, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 0, 2, 4, 3, 2, 1, 0, 3, 3, 2, 2, 1, 0, 3, 0, 1, 2, 3, 3, 2, 0, 1, 2, 3, 0, 3, 0, 1, 3, 1, 4, 2, 0, 2, 4, 1, 0, 3, 3, 1, 2, 2, 0, 3, 4, 1, 2, 1, 3, 3, 0, 4, 2, 4, 0, 2, 0, 2, 3
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The partition with Heinz number 1100 is (5,3,3,1,1), so a(1100) = 3 + 1 = 4.
The partition with Heinz number 2100 is (4,3,3,2,1,1), so a(2100) = 3 + 2 + 1 = 6.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Total[Last/@Partition[Reverse[primeMS[n]], 2]], {n, 100}]
PROG
(PARI) A346700(n) = if(1==n, 0, my(f=factor(n), s=0, p=0); forstep(k=#f~, 1, -1, while(f[k, 2], s += (p%2)*primepi(f[k, 1]); f[k, 2]--; p++)); (s)); \\ Antti Karttunen, Sep 21 2021
CROSSREFS
Sum of prime indices of A329888(n).
Subtracting from the odd version gives A344616 (non-reverse: A316524).
The unreversed version for standard compositions is A346633.
The odd non-reverse version is A346697.
The non-reverse version (multisets instead of partitions) is A346698.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344606 counts alternating permutations of prime indices.
Cf. A000070, A025047, A124754, A209281, A329888, A341446, A344617, A344653, A345957, A345958, A346701, A346702, A346704.
Sum of the odd bisection (odd-indexed parts) of the integer partition with Heinz number n.
+10
13
0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 6, 4, 3, 2, 7, 3, 8, 4, 4, 5, 9, 3, 3, 6, 4, 5, 10, 4, 11, 3, 5, 7, 4, 3, 12, 8, 6, 4, 13, 5, 14, 6, 5, 9, 15, 4, 4, 4, 7, 7, 16, 4, 5, 5, 8, 10, 17, 4, 18, 11, 6, 3, 6, 6, 19, 8, 9, 5, 20, 4, 21, 12, 5, 9, 5, 7, 22, 5, 4
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The partition with Heinz number 1100 is (5,3,3,1,1), so a(1100) = 5 + 3 + 1 = 9.
The partition with Heinz number 2100 is (4,3,3,2,1,1), so a(2100) = 4 + 3 + 1 = 8.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Total[First/@Partition[Append[Reverse[primeMS[n]], 0], 2]], {n, 100}]
CROSSREFS
The version for standard compositions is A209281(n+1) (even: A346633).
The non-reverse version (multisets instead of partitions) is A346697.
The even non-reverse version is A346698.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344606 counts alternating permutations of prime indices.
Cf. A000070, A025047, A120452, A124754, A329888, A341446, A344617, A345957, A345958, A346701, A346703.
Heinz number of the odd bisection (odd-indexed parts) of the integer partition with Heinz number n.
+10
9
1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 5, 4, 17, 6, 19, 10, 7, 11, 23, 6, 5, 13, 9, 14, 29, 10, 31, 8, 11, 17, 7, 6, 37, 19, 13, 10, 41, 14, 43, 22, 15, 23, 47, 12, 7, 10, 17, 26, 53, 9, 11, 14, 19, 29, 59, 10, 61, 31, 21, 8, 13, 22, 67, 34, 23, 14, 71
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The partition (2,2,2,1,1) has Heinz number 108 and odd bisection (2,2,1) with Heinz number 18, so a(108) = 18.
The partitions (3,2,2,1,1), (3,2,2,2,1), (3,3,2,1,1) have Heinz numbers 180, 270, 300 and all have odd bisection (3,2,1) with Heinz number 30, so a(180) = a(270) = a(300) = 30.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Times@@Prime/@First/@Partition[Append[Reverse[primeMS[n]], 0], 2], {n, 100}]
CROSSREFS
Positions of last appearances are A000290 without the first term 0.
Positions of first appearances are A342768.
The non-reverse version is A346703.
The even non-reverse version is A346704.
A001221 counts distinct prime factors.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A209281 (shifted) adds up the odd bisection of standard compositions.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346700 gives the sum of the even bisection of reversed prime indices.
Cf. A025047, A027187, A027193, A053738, A106356, A277103, A341446, A344653, A345957, A345958, A345959, A346698, A346702.
1, 4, 6, 16, 10, 24, 14, 64, 54, 40, 22, 96, 26, 56, 90, 256, 34, 216, 38, 160, 126, 88, 46, 384, 250, 104, 486, 224, 58, 360, 62, 1024, 198, 136, 350, 864, 74, 152, 234, 640, 82, 504, 86, 352, 810, 184, 94, 1536, 686, 1000, 306, 416, 106, 1944, 550, 896, 342
COMMENTS
These are the positions of first appearances of each positive integer in A346704. - Gus Wiseman, Oct 16 2021
FORMULA
If g = A006530(n) is the greatest prime factor of n > 1, then a(n) = 2n^2/g.
(End)
MATHEMATICA
Table[If[n==1, 1, 2*n^2/FactorInteger[n][[-1, 1]]], {n, 100}] (* Gus Wiseman, Aug 10 2021 *)
CROSSREFS
The sum of prime indices of a(n) is 2* A056239(n) - A061395(n) + 1 for n > 1.
The version for odd indices is A342768(n) = a(n)/2 for n > 1.
Except the first term, the sorted version is 2* A346635.
These are the positions of first appearances in A346704.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A346633 adds up the even bisection of standard compositions (odd: A209281).
A346698 adds up the even bisection of prime indices (reverse: A346699).
The a(n)-th composition in standard order is the even bisection of the n-th composition in standard order.
+10
2
0, 0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 4, 2, 1, 3, 0, 1, 2, 1, 4, 2, 1, 3, 8, 4, 2, 5, 1, 3, 6, 3, 0, 1, 2, 1, 4, 2, 1, 3, 8, 4, 2, 5, 1, 3, 6, 3, 16, 8, 4, 9, 2, 5, 10, 5, 1, 3, 6, 3, 12, 6, 3, 7, 0, 1, 2, 1, 4, 2, 1, 3, 8, 4, 2, 5, 1, 3, 6, 3, 16, 8, 4, 9, 2, 5
COMMENTS
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
a(n) is the row number in A066099 of the even bisection (even-indexed terms) of the n-th row of A066099.
EXAMPLE
Composition number 741 in standard order is (2,1,1,3,2,1), with even bisection (1,3,1), which is composition number 25 in standard order, so a(741) = 25.
MATHEMATICA
Table[Total[2^Accumulate[Reverse[Last/@Partition[ Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse, 2]]]]/2, {n, 0, 100}]
CROSSREFS
Length of the a(n)-th standard composition is A000120(n)/2 rounded down.
The version for reversed prime indices appears to be A329888, sums A346700.
Sum of the a(n)-th standard composition is A346633.
An unordered reverse version for odd bisection is A346701, sums A346699.
A066099 lists compositions in standard order.
A097805 counts compositions by alternating sum.
Search completed in 0.009 seconds
|