[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099812
Number of distinct primes dividing 2n (i.e., omega(2n)).
4
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 1, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
OFFSET
1,3
COMMENTS
Bisection of A001221.
LINKS
FORMULA
From Amiram Eldar, Sep 21 2024: (Start)
a(n) = A001221(2*n).
a(n) = omega(n) + 1 if n is odd, and a(n) = omega(n) if n is even.
Sum_{k=1..n} a(k) = n * (log(log(n)) + B + 1/2) + O(n/log(n)), where B is Mertens's constant (A077761). (End)
EXAMPLE
a(6) = 2 because 12 = 2*2*3 has 2 distinct prime divisors.
a(15) = 3 because 30 = 2*3*5 has 3 distinct prime divisors.
MAPLE
with(numtheory): omega:=proc(n) local div, A, j: div:=divisors(n): A:={}: for j from 1 to tau(n) do if isprime(div[j])=true then A:=A union {div[j]} else A:=A fi od: nops(A) end: seq(omega(2*n), n=1..130); # Emeric Deutsch, Mar 10 2005
MATHEMATICA
Table[PrimeNu[2*n], {n, 1, 50}] (* G. C. Greubel, May 21 2017 *)
PROG
(PARI) for(n=1, 50, print1(omega(2*n), ", ")) \\ G. C. Greubel, May 21 2017
(Magma) [#PrimeDivisors(2*n): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 19 2004
EXTENSIONS
More terms from Emeric Deutsch, Mar 10 2005
STATUS
approved