Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 23 2021 00:32:11
%S 1,4,6,16,10,24,14,64,54,40,22,96,26,56,90,256,34,216,38,160,126,88,
%T 46,384,250,104,486,224,58,360,62,1024,198,136,350,864,74,152,234,640,
%U 82,504,86,352,810,184,94,1536,686,1000,306,416,106,1944,550,896,342
%N Central diagonal of array A129595.
%C These are the positions of first appearances of each positive integer in A346704. - _Gus Wiseman_, Oct 16 2021
%H Antti Karttunen, <a href="/A129597/b129597.txt">Table of n, a(n) for n = 1..10000</a>
%F From _Gus Wiseman_, Aug 10 2021: (Start)
%F For n > 1, A001221(a(n)) = A099812(n).
%F If g = A006530(n) is the greatest prime factor of n > 1, then a(n) = 2n^2/g.
%F a(n) = A100484(A000720(n)) = 2n iff n is prime.
%F a(n > 1) = 2*A342768(n).
%F (End)
%t Table[If[n==1,1,2*n^2/FactorInteger[n][[-1,1]]],{n,100}] (* _Gus Wiseman_, Aug 10 2021 *)
%o (PARI) A129597(n) = if(1==n, n, my(f=factor(n)); (2*n*n)/f[#f~, 1]); \\ _Antti Karttunen_, Oct 16 2021
%Y a(n) = A129595(n,n).
%Y The sum of prime indices of a(n) is 2*A056239(n) - A061395(n) + 1 for n > 1.
%Y The version for odd indices is A342768(n) = a(n)/2 for n > 1.
%Y Except the first term, the sorted version is 2*A346635.
%Y These are the positions of first appearances in A346704.
%Y A001221 counts distinct prime factors.
%Y A001222 counts prime factors with multiplicity.
%Y A027187 counts partitions of even length, ranked by A028260.
%Y A346633 adds up the even bisection of standard compositions (odd: A209281).
%Y A346698 adds up the even bisection of prime indices (reverse: A346699).
%Y Cf. A000290, A006530, A037143, A329888, A344606, A345957, A346697, A346700, A346701.
%K nonn
%O 1,2
%A _Antti Karttunen_, May 01 2007, based on _Marc LeBrun_'s Jan 11 2006 message on SeqFan mailing list.