[go: up one dir, main page]

login
Search: a257614 -id:a257614
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
+0
24
1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
OFFSET
0,2
COMMENTS
Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\ b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4,, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash.
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
L. Carlitz and R. Scoville, Generalized Eulerian numbers: combinatorial applications, J. für die reine und angewandte Mathematik, 265 (1974): 110-37. See Section 3.
Dale Gerdemann, A256890, Plot of t(m,n) mod k , YouTube, 2015.
Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018-2019.
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)
EXAMPLE
Array, t(n, k), begins as:
1, 2, 4, 8, 16, 32, 64, ...;
2, 12, 52, 196, 684, 2276, 7340, ...;
4, 52, 416, 2644, 14680, 74652, 357328, ...;
8, 196, 2644, 26440, 220280, 1623964, 10978444, ...;
16, 684, 14680, 220280, 2643360, 27227908, 251195000, ...;
32, 2276, 74652, 1623964, 27227908, 381190712, 4677894984, ...;
64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
1;
2, 2;
4, 12, 4;
8, 52, 52, 8;
16, 196, 416, 196, 16;
32, 684, 2644, 2644, 684, 32;
64, 2276, 14680, 26440, 14680, 2276, 64;
128, 7340, 74652, 220280, 220280, 74652, 7340, 128;
256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256;
MATHEMATICA
Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j, 0, k}], {n, 0, 9}, {k, 0, n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
PROG
(PARI) t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ Michel Marcus, Apr 14 2015
(Magma)
A256890:= func< n, k | (&+[(-1)^(k-j)*Binomial(j+3, j)*Binomial(n+4, k-j)*(j+2)^n: j in [0..k]]) >;
[A256890(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
(SageMath)
def A256890(n, k): return sum((-1)^(k-j)*Binomial(j+3, j)*Binomial(n+4, k-j)*(j+2)^n for j in range(k+1))
flatten([[A256890(n, k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022
KEYWORD
nonn,tabl,easy
AUTHOR
Dale Gerdemann, Apr 12 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 2.
+0
13
1, 2, 2, 4, 16, 4, 8, 88, 88, 8, 16, 416, 1056, 416, 16, 32, 1824, 9664, 9664, 1824, 32, 64, 7680, 76224, 154624, 76224, 7680, 64, 128, 31616, 549504, 1999232, 1999232, 549504, 31616, 128, 256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 2.
Sum_{k=0..n} T(n, k) = A002866(n).
From G. C. Greubel, Mar 21 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 2, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = 2*A100575(n+1). (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 16, 4;
8, 88, 88, 8;
16, 416, 1056, 416, 16;
32, 1824, 9664, 9664, 1824, 32;
64, 7680, 76224, 154624, 76224, 7680, 64;
128, 31616, 549504, 1999232, 1999232, 549504, 31616, 128;
256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 2, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
PROG
(Magma)
function T(n, k, a, b)
if k lt 0 or k gt n then return 0;
elif k eq 0 or k eq n then return 1;
else return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b);
end if; return T;
end function;
[T(n, k, 2, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 21 2022
(Sage)
def T(n, k, a, b): # A257609
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 2, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
CROSSREFS
Cf. similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 03 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.
+0
14
1, 2, 2, 4, 20, 4, 8, 132, 132, 8, 16, 748, 2112, 748, 16, 32, 3964, 25124, 25124, 3964, 32, 64, 20364, 256488, 552728, 256488, 20364, 64, 128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128, 256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.
Sum_{k=0..n} T(n, k) = A007559(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 2. - G. C. Greubel, Mar 20 2022
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 20, 4;
8, 132, 132, 8;
16, 748, 2112, 748, 16;
32, 3964, 25124, 25124, 3964, 32;
64, 20364, 256488, 552728, 256488, 20364, 64;
128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128;
256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 3, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257610
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 3, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
CROSSREFS
See similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 03 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.
+0
10
1, 2, 2, 4, 24, 4, 8, 184, 184, 8, 16, 1216, 3680, 1216, 16, 32, 7584, 53824, 53824, 7584, 32, 64, 46208, 674752, 1507072, 674752, 46208, 64, 128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128, 256, 1677312, 84892672, 636233728, 1196803584, 636233728, 84892672, 1677312, 256
OFFSET
0,2
COMMENTS
Corresponding entries in this triangle and in A060187 differ only by powers of 2. - F. Chapoton, Nov 04 2020
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.
Sum_{k=0..n} T(n,k) = A047053(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 4, and b = 2. - G. C. Greubel, Mar 20 2022
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 24, 4;
8, 184, 184, 8;
16, 1216, 3680, 1216, 16;
32, 7584, 53824, 53824, 7584, 32;
64, 46208, 674752, 1507072, 674752, 46208, 64;
128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 4, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
PROG
(PARI) f(x) = 4*x + 2;
T(n, k) = t(n-k, k);
t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1, m) + f(n)*t(n, m-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "); ); print(); ); \\ Michel Marcus, May 06 2015
(Sage)
def T(n, k, a, b): # A257612
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 4, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
CROSSREFS
Cf. A047053 (row sums), A060187, A142459, A257621.
See similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 06 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 6*x + 2.
+0
10
1, 2, 2, 4, 32, 4, 8, 312, 312, 8, 16, 2656, 8736, 2656, 16, 32, 21664, 175424, 175424, 21664, 32, 64, 174336, 3019200, 7016960, 3019200, 174336, 64, 128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128, 256, 11182592, 722956288, 5907889664, 11379596800, 5907889664, 722956288, 11182592, 256
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 6*x + 2.
Sum_{k=0..n} T(n, k) = A049308(n).
From G. C. Greubel, Mar 21 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 6, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (2^n/3)*(2^(2*n+1) - (3*n+2)). (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 32, 4;
8, 312, 312, 8;
16, 2656, 8736, 2656, 16;
32, 21664, 175424, 175424, 21664, 32;
64, 174336, 3019200, 7016960, 3019200, 174336, 64;
128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 6, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257610
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 6, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
CROSSREFS
Cf. A000079, A049308 (row sums), A142461, A257625.
Similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 09 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 2.
+0
10
1, 2, 2, 4, 36, 4, 8, 388, 388, 8, 16, 3676, 12416, 3676, 16, 32, 33564, 283204, 283204, 33564, 32, 64, 303260, 5538184, 13027384, 5538184, 303260, 64, 128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 2.
Sum_{k=0..n} T(n, k) = A144827(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 7, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (4*9^n - 2^n*(7*n + 4))/7.
T(n, 2) = (2^(n-1)*(49*n^2 +7*n -12) + 11*2^(4*n+1) - 4*(7*n+4)*9^n)/49. (End)
EXAMPLE
1;
2, 2;
4, 36, 4;
8, 388, 388, 8;
16, 3676, 12416, 3676, 16;
32, 33564, 283204, 283204, 33564, 32;
64, 303260, 5538184, 13027384, 5538184, 303260, 64;
128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 7, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257617
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 7, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
CROSSREFS
Cf. A000079, A142462, A144827 (row sums), A257627.
Similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 09 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 8*x + 2.
+0
9
1, 2, 2, 4, 40, 4, 8, 472, 472, 8, 16, 4928, 16992, 4928, 16, 32, 49824, 433984, 433984, 49824, 32, 64, 499584, 9505728, 22567168, 9505728, 499584, 64, 128, 4999040, 192085632, 909941120, 909941120, 192085632, 4999040, 128
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 8*x + 2.
Sum_{k=0..n} T(n, k) = A144828(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 8, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = 2^(n-1)*(5^n - 2*n - 1).
T(n, 2) = 2^(n-3)*(3^(2*n+1) -2*(2*n+1)*5^n -1 +4*n^2). (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 40, 4;
8, 472, 472, 8;
16, 4928, 16992, 4928, 16;
32, 49824, 433984, 433984, 49824, 32;
64, 499584, 9505728, 22567168, 9505728, 499584, 64;
128, 4999040, 192085632, 909941120, 909941120, 192085632, 4999040, 128;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 8, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257618
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 8, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
CROSSREFS
Cf. A000079, A144828 (row sums), A167884.
Similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 09 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2.
+0
10
1, 2, 2, 4, 44, 4, 8, 564, 564, 8, 16, 6436, 22560, 6436, 16, 32, 71404, 637844, 637844, 71404, 32, 64, 786948, 15470232, 36994952, 15470232, 786948, 64, 128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2.
Sum_{k=0..n} T(n, k) = A144829(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 9, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (1/9)*(4*11^n - 2^n*(9*n + 4)).
T(n, 2) = (1/81)*(26*20^n - 4*(4+9*n)*11^n - 2^(n-1)*(20 + 9*n - 81*n^2)). (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 44, 4;
8, 564, 564, 8;
16, 6436, 22560, 6436, 16;
32, 71404, 637844, 637844, 71404, 32;
64, 786948, 15470232, 36994952, 15470232, 786948, 64;
128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 9, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
PROG
(PARI) f(x) = 9*x + 2;
t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, f(m)*t(n-1, m) + f(n)*t(n, m-1)));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ Michel Marcus, May 23 2015
(Sage)
def T(n, k, a, b): # A257619
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 9, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
CROSSREFS
Cf. A000079, A144829 (row sums), A257608.
Similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 09 2015
STATUS
approved
Triangle read by rows: T(n,k) = t(n-k, k), where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 5*n + 3.
+0
9
1, 3, 3, 9, 48, 9, 27, 501, 501, 27, 81, 4494, 13026, 4494, 81, 243, 37815, 250230, 250230, 37815, 243, 729, 309324, 4122735, 9008280, 4122735, 309324, 729, 2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k) where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 5*n + 3.
Sum_{k=0..n} T(n, k) = A008548(n).
From G. C. Greubel, Feb 27 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)
EXAMPLE
Array, t(n,k), begins as:
1, 3, 9, 27, 81, ... A000244;
3, 48, 501, 4494, 37815, ...;
9, 501, 13026, 250230, 4122735, ...;
27, 4494, 250230, 9008280, 256971945, ...;
81, 37815, 4122735, 256971945, 11820709470, ...;
243, 309324, 62256627, 6368680566, 450199373658, ...;
729, 2498649, 891791568, 144065371932, 15108742867890, ...;
Triangle, T(n,k), begins as:
1;
3, 3;
9, 48, 9;
27, 501, 501, 27;
81, 4494, 13026, 4494, 81;
243, 37815, 250230, 250230, 37815, 243;
729, 309324, 4122735, 9008280, 4122735, 309324, 729;
2187, 2498649, 62256627, 256971945, 256971945, 62256627, 2498649, 2187;
MATHEMATICA
t[n_, k_, p_, q_]:= t[n, k, p, q]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+ q)*t[n-1, k, p, q] + (p*n+q)*t[n, k-1, p, q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n, k, 5, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 27 2022 *)
PROG
(Sage)
@CachedFunction
def t(n, k, p, q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1, k, p, q) + (p*n+q)*t(n, k-1, p, q)
def A257623(n, k): return t(n-k, k, 5, 3)
flatten([[A257623(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 27 2022
CROSSREFS
Similar sequences listed in A256890.
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 10 2015
STATUS
approved

Search completed in 0.007 seconds