[go: up one dir, main page]

login
A053105
a(n) = ((7*n+9)(!^7))/9(!^7), related to A034829 (((7*n+2)(!^7))/2 sept-, or 7-factorials).
3
1, 16, 368, 11040, 408480, 17973120, 916629120, 53164488960, 3455691782400, 248809808332800, 19655974858291200, 1690413837813043200, 157208486916613017600, 15720848691661301760000
OFFSET
0,2
COMMENTS
Row m=9 of the array A(8; m,n) := ((7*n+m)(!^7))/m(!^7), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((7*n+9)(!^7))/9(!^7)= A034829(n+2)/9.
E.g.f.: 1/(1-7*x)^(16/7).
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 15, 5!, 7}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
CoefficientList[Series[1/(1-7x)^(16/7), {x, 0, 20}], x]Range[0, 20]! (* Harvey P. Dale, Sep 11 2011 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-7*x)^(16/7))) \\ G. C. Greubel, Aug 16 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(16/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
Cf. A051188, A045754(n+1), A034829-34(n+1), A053104-A053106 (rows m=0..10).
Sequence in context: A265476 A008427 A187177 * A220576 A264186 A240458
KEYWORD
easy,nonn
STATUS
approved