OFFSET
1,12
COMMENTS
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 8.
FORMULA
T(n,k) = (m*n - m*k + 1)*T(n-1, k-1) + (m*k - (m-1))*T(n-1, k) with T(n, 1) = T(n, n) = 1 and m = -1.
From G. C. Greubel, Mar 01 2022: (Start)
T(n, n-k) = T(n, k).
T(n, k) = (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3) with T(1, k) = T(2, k) = 1.
Sum_{k=1..n} T(n, k) = [n==1] + 2*[n==2] + 2*[n==3] + (1-(-1)^n)*0^(n-3)*[n>3]. (End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 0, 1;
1, -1, -1, 1;
1, -2, 2, -2, 1;
1, -3, 2, 2, -3, 1;
1, -4, 7, -8, 7, -4, 1;
1, -5, 9, -5, -5, 9, -5, 1;
1, -6, 16, -26, 30, -26, 16, -6, 1;
1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
...
MAPLE
T:=proc(n, k, l) option remember;
if (n=1 or k=1 or k=n) then 1 else
(l*n-l*k+1)*T(n-1, k-1, l)+(l*k-l+1)*T(n-1, k, l); fi; end;
for n from 1 to 15 do lprint([seq(T(n, k, -1), k=1..n)]); od; # N. J. A. Sloane, May 08 2013
MATHEMATICA
m=-1;
T[n_, 1]:= 1; T[n_, n_]:= 1;
T[n_, k_]:= (m*n-m*k+1)*T[n-1, k-1] + (m*k - (m - 1))*T[n-1, k];
Table[T[n, k], {n, 15}, {k, n}]//Flatten
PROG
(Sage)
def A144431(n, k):
if (n<3): return 1
else: return (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3)
flatten([[A144431(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 01 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Oct 04 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 08 2013
STATUS
approved