[go: up one dir, main page]

login
A257617
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 2.
10
1, 2, 2, 4, 36, 4, 8, 388, 388, 8, 16, 3676, 12416, 3676, 16, 32, 33564, 283204, 283204, 33564, 32, 64, 303260, 5538184, 13027384, 5538184, 303260, 64, 128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 2.
Sum_{k=0..n} T(n, k) = A144827(n).
From G. C. Greubel, Mar 24 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 7, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (4*9^n - 2^n*(7*n + 4))/7.
T(n, 2) = (2^(n-1)*(49*n^2 +7*n -12) + 11*2^(4*n+1) - 4*(7*n+4)*9^n)/49. (End)
EXAMPLE
1;
2, 2;
4, 36, 4;
8, 388, 388, 8;
16, 3676, 12416, 3676, 16;
32, 33564, 283204, 283204, 33564, 32;
64, 303260, 5538184, 13027384, 5538184, 303260, 64;
128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 7, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257617
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 7, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
CROSSREFS
Cf. A000079, A142462, A144827 (row sums), A257627.
Similar sequences listed in A256890.
Sequence in context: A296048 A327011 A300361 * A309344 A257618 A088895
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 09 2015
STATUS
approved