OFFSET
0,2
COMMENTS
For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_8)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Number of n X n monomial matrices whose nonzero entries are unit quaternions.
Number of ways of reassembling n slices of toast or of binding n square pages. - Donald S. McDonald, Sep 24 2005
LINKS
FORMULA
a(n) = 8*A034976(n) = Product_{k=1..n} 8*k, n >= 1; a(0) = 1.
a(n) = n!*8^n.
E.g.f.: 1/(1-8*x).
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 16*x/(1 - 16*x/(1 - 24*x/(1 - 24*x/(1 - 32*x/(1 - 32*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 07 2012
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/8).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/8). (End)
MATHEMATICA
Table[n! 8^n, {n, 0, 20}] (* Harvey P. Dale, Aug 14 2021 *)
PROG
(Magma) [8^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
(SageMath) [8^n*factorial(n) for n in range(40)] # G. C. Greubel, Oct 21 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved