[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a172392 -id:a172392
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f. satisfies: A(x) = G(x/A(x))^2 and G(x)^2 = A(x*G(x)^2) where G(x) = Sum_{n>=0} C(2n,n)*C(2n+2,n+1)/(n+2)*x^n is the g.f. of A172392.
+20
2
1, 8, 12, 0, 28, 0, 264, 0, 3720, 0, 63840, 0, 1232432, 0, 25731216, 0, 568130552, 0, 13081215840, 0, 311178567648, 0, 7597974517056, 0, 189518147463232, 0, 4811962763222784, 0, 124028853694440640, 0, 3238304402221646880, 0
G.f. satisfies: A(x) = G(x/A(x)^2) and G(x) = A(x*G(x)^2) = Sum_{n>=0} C(2n,n)*C(2n+2,n+1)/(n+2)*x^n is the g.f. of A172392.
+20
2
1, 4, -2, 8, -20, 96, -324, 1648, -6348, 33200, -137848, 732640, -3193296, 17148608, -77335400, 418289696, -1934677436, 10518803376, -49611450120, 270796872160, -1297234193744, 7102371571840, -34458382484976, 189117499963840
Triangle read by rows, a Narayana related triangle whose rows are refinements of twice the Catalan numbers (for n >= 2).
+10
3
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 7, 12, 7, 1, 0, 1, 11, 30, 30, 11, 1, 0, 1, 16, 65, 100, 65, 16, 1, 0, 1, 22, 126, 280, 280, 126, 22, 1, 0, 1, 29, 224, 686, 980, 686, 224, 29, 1, 0, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1
Expansion of 3F2( (1/2, 3/2, 5/2); (3, 5))(64 x)
+10
2
1, 8, 140, 3360, 97020, 3171168, 113369256, 4338459840, 175165316040, 7385525026880, 322747443674656, 14534919841012480, 671591162296782000, 31725844951938480000, 1527939354203180010000, 74847268228930016688000, 3722092276301165621547000
Expansion of 2F1( 1/2, 3/2; 4; 16*x ).
+10
1
1, 3, 18, 140, 1260, 12474, 132132, 1472328, 17065620, 204155380, 2506399896, 31443925968, 401783498480, 5215458874500, 68633685693000, 914099013896400, 12304253831789700, 167193096184907100, 2291164651422801000, 31637804708163654000, 439903041116118980400
a(n) = 16^n*[x^n]hypergeometric([3/2, -2*n], [3], -x).
+10
1
1, 16, 480, 17920, 752640, 34062336, 1623638016, 80408739840, 4100845731840, 214072431738880, 11388653368508416, 615465127495335936, 33704042696173158400, 1866685441634205696000, 104401050057113075712000, 5889038054986331298201600, 334693662791723162114457600

Search completed in 0.005 seconds