[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a254633 -id:a254633
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows, T(n, k) = 4^n*[x^k]hypergeometric([3/2, -n], [3], -x), n>=0, 0<=k<=n.
+10
3
1, 4, 2, 16, 16, 5, 64, 96, 60, 14, 256, 512, 480, 224, 42, 1024, 2560, 3200, 2240, 840, 132, 4096, 12288, 19200, 17920, 10080, 3168, 429, 16384, 57344, 107520, 125440, 94080, 44352, 12012, 1430, 65536, 262144, 573440, 802816, 752640, 473088, 192192, 45760, 4862
OFFSET
0,2
FORMULA
T(n,0) = A000302(n).
T(n,n) = A000108(n+1).
T(n,1) = A002699(n) for n>=1.
T(n,n-1) = A128650(n+2) for n>=1.
T(2*n,n) = A254633(n).
T(n,k) = 4^(n-k)*C(n,k)*Catalan(k+1).
sum(k=0..n, T(n,k)) = A025230(n+2).
EXAMPLE
[ 1]
[ 4, 2]
[ 16, 16, 5]
[ 64, 96, 60, 14]
[ 256, 512, 480, 224, 42]
[1024, 2560, 3200, 2240, 840, 132]
[4096, 12288, 19200, 17920, 10080, 3168, 429]
MAPLE
h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
seq(print(seq(4^n*coeff(h(n), x, k), k=0..n)), n=0..9);
MATHEMATICA
T[n_, k_] := 4^(n-k) Binomial[n, k] CatalanNumber[k+1];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019 *)
PROG
(Sage)
A254632 = lambda n, k: (4)^(n-k)*binomial(n, k)*catalan_number(k+1)
for n in range(7): [A254632(n, k) for k in (0..n)]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 03 2015
STATUS
approved

Search completed in 0.005 seconds