# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a185248 Showing 1-1 of 1 %I A185248 #14 Feb 17 2024 04:30:28 %S A185248 1,8,140,3360,97020,3171168,113369256,4338459840,175165316040, %T A185248 7385525026880,322747443674656,14534919841012480,671591162296782000, %U A185248 31725844951938480000,1527939354203180010000,74847268228930016688000,3722092276301165621547000 %N A185248 Expansion of 3F2( (1/2, 3/2, 5/2); (3, 5))(64 x) %C A185248 Generalization of formula for A172392. %C A185248 Combinatorial interpretation welcome. %H A185248 G. C. Greubel, Table of n, a(n) for n = 0..500 %F A185248 D-finite with recurrence +n*(n+4)*(n+2)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022 %F A185248 From _Vaclav Kotesovec_, Feb 17 2024: (Start) %F A185248 a(n) = 16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!). %F A185248 a(n) ~ 2^(6*n + 7) / (Pi^(3/2) * n^(9/2)). (End) %t A185248 CoefficientList[Series[HypergeometricPFQ[{1/2, 3/2, 5/2}, {3, 5}, 64 x], {x, 0, 20}], x] %t A185248 Table[16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!), {n, 0, 20}] (* _Vaclav Kotesovec_, Feb 17 2024 *) %Y A185248 Cf. A172392. %K A185248 nonn,easy %O A185248 0,2 %A A185248 _Olivier GĂ©rard_, Feb 15 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE