[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 3F2( (1/2, 3/2, 5/2); (3, 5))(64 x)
2

%I #14 Feb 17 2024 04:30:28

%S 1,8,140,3360,97020,3171168,113369256,4338459840,175165316040,

%T 7385525026880,322747443674656,14534919841012480,671591162296782000,

%U 31725844951938480000,1527939354203180010000,74847268228930016688000,3722092276301165621547000

%N Expansion of 3F2( (1/2, 3/2, 5/2); (3, 5))(64 x)

%C Generalization of formula for A172392.

%C Combinatorial interpretation welcome.

%H G. C. Greubel, <a href="/A185248/b185248.txt">Table of n, a(n) for n = 0..500</a>

%F D-finite with recurrence +n*(n+4)*(n+2)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022

%F From _Vaclav Kotesovec_, Feb 17 2024: (Start)

%F a(n) = 16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!).

%F a(n) ~ 2^(6*n + 7) / (Pi^(3/2) * n^(9/2)). (End)

%t CoefficientList[Series[HypergeometricPFQ[{1/2, 3/2, 5/2}, {3, 5}, 64 x], {x, 0, 20}], x]

%t Table[16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!), {n, 0, 20}] (* _Vaclav Kotesovec_, Feb 17 2024 *)

%Y Cf. A172392.

%K nonn,easy

%O 0,2

%A _Olivier Gérard_, Feb 15 2011