[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172392
a(n) = C(2n,n)*C(2n+2,n+1)/(n+2).
7
1, 4, 30, 280, 2940, 33264, 396396, 4907760, 62573940, 816621520, 10861066216, 146738321184, 2008917492400, 27815780664000, 388924218927000, 5484594083378400, 77926940934668100, 1114620641232714000
OFFSET
0,2
FORMULA
G.f. A(X) satisfies: A(x)^2 = G(x*A(x)^2) and G(x) = A(x/G(x))^2 = g.f. of A172391.
G.f. A(X) satisfies: A(x) = G(x*A(x)^2) and G(x) = A(x/G(x)^2) = g.f. of A172393.
a(n) = (n+1)*A005568(n) = A000108(n+1)*A000984(n), where A000108 is the Catalan numbers and A000984 is the central binomial coefficients.
G.f. : 2F1( (1/2, 3/2); (3))(16 x). - Olivier Gérard Feb 15 2011
a(n) = 4^n*[x^n]hypergeom([3/2, -2*n], [3], -x). - Peter Luschny, Feb 03 2015
D-finite with recurrence a(n) = a(n-1)*( 4*(4*n^2-1)/(n*(n+2)) ) for n>=1. - Peter Luschny, Feb 04 2015
EXAMPLE
G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...
A(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
where A(x)^2 = G(x*A(x)^2) and G(x) = A(x/G(x))^2 = g.f. of A172391:
A172391=[1,8,12,0,28,0,264,0,3720,0,63840,0,1232432,0,25731216,0,...].
MAPLE
A172392 := n -> 4^n*coeff(simplify(hypergeom([3/2, -2*n], [3], -x)), x, n):
seq(A172392(n), n=0..17); # Peter Luschny, Feb 03 2015
MATHEMATICA
CoefficientList[
Series[HypergeometricPFQ[{1/2, 3/2}, {3}, 16 x], {x, 0, 20}], x] (* From Olivier Gérard, Feb 15 2011 *)
Table[(Binomial[2n, n]Binomial[2n+2, n+1])/(n+2), {n, 0, 30}] (* Harvey P. Dale, Jul 16 2012 *)
PROG
(PARI) {a(n)=binomial(2*n, n)*binomial(2*n+2, n+1)/(n+2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2010
STATUS
approved