[go: up one dir, main page]

login
Search: a156035 -id:a156035
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n*(n+2) = (n+1)^2 - 1.
(Formerly M2720)
+10
311
0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, 2600
OFFSET
0,2
COMMENTS
Erdős conjectured that n^2 - 1 = k! has a solution if and only if n is 5, 11 or 71 (when k is 4, 5 or 7).
Second-order linear recurrences y(m) = 2y(m-1) + a(n)*y(m-2), y(0) = y(1) = 1, have closed form solutions involving only powers of integers. - Len Smiley, Dec 08 2001
Number of edges in the join of two cycle graphs, both of order n, C_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Let k be a positive integer, M_n be the n X n matrix m_(i,j) = k^abs(i-j) then det(M_n) = (-1)^(n-1)*a(k-1)^(n-1). - Benoit Cloitre, May 28 2002
Also numbers k such that 4*k + 4 is a square. - Cino Hilliard, Dec 18 2003
For each term k, the function sqrt(x^2 + 1), starting with 1, produces an integer after k iterations. - Gerald McGarvey, Aug 19 2004
a(n) mod 3 = 0 if and only if n mod 3 > 0: a(A008585(n)) = 2; a(A001651(n)) = 0; a(n) mod 3 = 2*(1-A079978(n)). - Reinhard Zumkeller, Oct 16 2006
a(n) is the number of divisors of a(n+1) that are not greater than n. - Reinhard Zumkeller, Apr 09 2007
Nonnegative X values of solutions to the equation X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(n+2). - Mohamed Bouhamida, Nov 06 2007
Sequence allows us to find X values of the equation: X + (X + 1)^2 + (X + 2)^3 = Y^2. To prove that X = n^2 + 2n: Y^2 = X + (X + 1)^2 + (X + 2)^3 = X^3 + 7*X^2 + 15X + 9 = (X + 1)(X^2 + 6X + 9) = (X + 1)*(X + 3)^2 it means: (X + 1) must be a perfect square, so X = k^2 - 1 with k>=1. we can put: k = n + 1, which gives: X = n^2 + 2n and Y = (n + 1)(n^2 + 2n + 3). - Mohamed Bouhamida, Nov 12 2007
From R. K. Guy, Feb 01 2008: (Start)
Toads and Frogs puzzle:
This is also the number of moves that it takes n frogs to swap places with n toads on a strip of 2n + 1 squares (or positions, or lily pads) where a move is a single slide or jump, illustrated for n = 2, a(n) = 8 by
T T - F F
T - T F F
T F T - F
T F T F -
T F - F T
- F T F T
F - T F T
F F T - T
F F - T T
I was alerted to this by the Holton article, but on consulting Singmaster's sources, I find that the puzzle goes back at least to 1867.
Probably the first to publish the number of moves for n of each animal was Edouard Lucas in 1883. (End)
a(n+1) = terms of rank 0, 1, 3, 6, 10 = A000217 of A120072 (3, 8, 5, 15). - Paul Curtz, Oct 28 2008
Row 3 of array A163280, n >= 1. - Omar E. Pol, Aug 08 2009
Final digit belongs to a periodic sequence: 0, 3, 8, 5, 4, 5, 8, 3, 0, 9. - Mohamed Bouhamida, Sep 04 2009 [Comment edited by N. J. A. Sloane, Sep 24 2009]
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod(f(x)); here n belongs to N. There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z. However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x. The present sequence represents the non-integer part when the polynomial is x^2 + x + 1 and x = sqrt(2), f(x+n*f(x))/f(x) = A056108(n) + a(n)*sqrt(2). - A.K. Devaraj, Sep 18 2009
For n >= 1, a(n) is the number for which 1/a(n) = 0.0101... (A000035) in base (n+1). - Rick L. Shepherd, Sep 27 2009
For n > 0, continued fraction [n, 1, n] = (n+1)/a(n); e.g., [6, 1, 6] = 7/48. - Gary W. Adamson, Jul 15 2010
Starting (3, 8, 15, ...) = binomial transform of [3, 5, 2, 0, 0, 0, ...]; e.g., a(3) = 15 = (1*3 + 2*5 +1*2) = (3 + 10 + 2). - Gary W. Adamson, Jul 30 2010
a(n) is essentially the case 0 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_0(n) = 2*n-n^2 and a(n) = -P_0(n+2). See also A067998 and for the case k=1 A080956. - Peter Luschny, Jul 08 2011
a(n) is the maximal determinant of a 2 X 2 matrix with integer elements from {1, ..., n+1}, so the maximum determinant of a 2x2 matrix with integer elements from {1, ..., 5} = 5^2 - 1 = a(4) = 24. - Aldo González Lorenzo, Oct 12 2011
Using four consecutive triangular numbers t1, t2, t3 and t4, plot the points (0, 0), (t1, t2), and (t3, t4) to create a triangle. Twice the area of this triangle are the numbers in this sequence beginning with n = 1 to give 8. - J. M. Bergot, May 03 2012
Given a particle with spin S = n/2 (always a half-integer value), the quantum-mechanical expectation value of the square of the magnitude of its spin vector evaluates to <S^2> = S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012
Twice the harmonic mean [H(x, y) = (2*x*y)/(x + y)] of consecutive triangular numbers A000217(n) and A000217(n+1). - Raphie Frank, Sep 28 2012
Number m such that floor(sqrt(m)) = floor(m/floor(sqrt(m))) - 2 for m > 0. - Takumi Sato, Oct 10 2012
The solutions of equation 1/(i - sqrt(j)) = i + sqrt(j), when i = (n+1), j = a(n). For n = 1, 2 + sqrt(3) = 3.732050.. = A019973. For n = 2, 3 + sqrt(8) = 5.828427... = A156035. - Kival Ngaokrajang, Sep 07 2013
The integers in the closed form solution of a(n) = 2*a(n-1) + a(m-2)*a(n-2), n >= 2, a(0) = 0, a(1) = 1 mentioned by Len Smiley, Dec 08 2001, are m and -m + 2 where m >= 3 is a positive integer. - Felix P. Muga II, Mar 18 2014
Let m >= 3 be a positive integer. If a(n) = 2*a(n-1) + a(m-2) * a(n-2), n >= 2, a(0) = 0, a(1) = 1, then lim_{n->oo} a(n+1)/a(n) = m. - Felix P. Muga II, Mar 18 2014
For n >= 4 the Szeged index of the wheel graph W_n (with n + 1 vertices). In the Sarma et al. reference, Theorem 2.7 is incorrect. - Emeric Deutsch, Aug 07 2014
If P_{k}(n) is the n-th k-gonal number, then a(n) = t*P_{s}(n+2) - s*P_{t}(n+2) for s=t+1. - Bruno Berselli, Sep 04 2014
For n >= 1, a(n) is the dimension of the simple Lie algebra A_n. - Wolfdieter Lang, Oct 21 2015
Finding all positive integers (n, k) such that n^2 - 1 = k! is known as Brocard's problem, (see A085692). - David Covert, Jan 15 2016
For n > 0, a(n) mod (n+1) = a(n) / (n+1) = n. - Torlach Rush, Apr 04 2016
Conjecture: When using the Sieve of Eratosthenes and sieving (n+1..a(n)), with divisors (1..n) and n>0, there will be no more than a(n-1) composite numbers. - Fred Daniel Kline, Apr 08 2016
a(n) mod 8 is periodic with period 4 repeating (0,3,0,7), that is a(n) mod 8 = 5/2 - (5/2) cos(n*Pi) - sin(n*Pi/2) + sin(3*n*Pi/2). - Andres Cicuttin, Jun 02 2016
Also for n > 0, a(n) is the number of times that n-1 occurs among the first (n+1)! terms of A055881. - R. J. Cano, Dec 21 2016
The second diagonal of composites (the only prime is number 3) from the right on the Klauber triangle (see Kival Ngaokrajang link), which is formed by taking the positive integers and taking the first 1, the next 3, the following 5, and so on, each centered below the last. - Charles Kusniec, Jul 03 2017
Also the number of independent vertex sets in the n-barbell graph. - Eric W. Weisstein, Aug 16 2017
Interleaving of A000466 and A033996. - Bruce J. Nicholson, Nov 08 2019
a(n) is the number of degrees of freedom in a triangular cell for a Raviart-Thomas or Nédélec first kind finite element space of order n. - Matthew Scroggs, Apr 22 2020
From Muge Olucoglu, Jan 19 2021: (Start)
For n > 1, a(n-2) is the maximum number of elements in the second stage of the Quine-McCluskey algorithm whose minterms are not covered by the functions of n bits. At n=3, we have a(3-2) = a(1) = 1*(1+2) = 3 and f(A,B,C) = sigma(0,1,2,5,6,7).
.
0 1 2 5 6 7
+---------------
*(0,1)| X X
(0,2)| X X
(1,5)| X X
*(2,6)| X X
*(5,7)| X X
(6,7)| X X
.
*: represents the elements that are covered. (End)
1/a(n) is the ratio of the sum of the first k odd numbers and the sum of the next n*k odd numbers. - Melvin Peralta, Jul 15 2021
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {1, 2n}]. - Magus K. Chu, Sep 09 2022
Number of diagonals parallel to an edge in a regular (2*n+4)-gon (cf. A367204). - Paolo Xausa, Nov 21 2023
For n >= 1, also the number of minimum cyclic edge cuts in the (n+2)-trapezohedron graph. - Eric W. Weisstein, Nov 21 2024
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see index under Toads and Frogs Puzzle.
Martin Gardner, Perplexing Puzzles and Tantalizing Teasers, p. 21 (for "The Dime and Penny Switcheroo").
R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
Derek Holton, Math in School, 37 #1 (Jan 2008) 20-22.
Edouard Lucas, Récréations Mathématiques, Gauthier-Villars, Vol. 2 (1883) 141-143.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See p. 22.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
Kival Ngaokrajang, Klauber triangle
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
K. V. S. Sarma and I. V. N. Uma, On Szeged index of standard graphs, International J. of Math. Archive, 3(8), 2012, 3129-3135. - Emeric Deutsch, Aug 07 2014
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Eric Weisstein's World of Mathematics, Barbell Graph.
Eric Weisstein's World of Mathematics, Cyclic Edge Cut.
Eric Weisstein's World of Mathematics, Independent Vertex Set.
Eric Weisstein's World of Mathematics, Near-Square Prime.
Eric Weisstein's World of Mathematics, Trapezohedral Graph.
FORMULA
G.f.: x*(3-x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = A000290(n+1) - 1.
A002378(a(n)) = A002378(n)*A002378(n+1); e.g., A002378(15)=240=12*20. - Charlie Marion, Dec 29 2003
a(n) = A067725(n)/3. - Zerinvary Lajos, Mar 06 2007
a(n) = Sum_{k=1..n} A144396(k). - Zerinvary Lajos, May 11 2007
a(n) = A134582(n+1)/4. - Zerinvary Lajos, Feb 01 2008
A143053(a(n)) = A000290(n+1), for n > 0. - Reinhard Zumkeller, Jul 20 2008
a(n) = Real((n+1+i)^2). - Gerald Hillier, Oct 12 2008
A053186(a(n)) = 2*n. - Reinhard Zumkeller, May 20 2009
a(n) = (n! + (n+1)!)/(n-1)!, n > 0. - Gary Detlefs, Aug 10 2009
a(n) = floor(n^5/(n^3+1)) with offset 1 (a(1)=0). - Gary Detlefs, Feb 11 2010
a(n) = a(n-1) + 2*n + 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = 3/4. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2/(Integral_{x=0..Pi/2} (sin(x))^(n-1)*(cos(x))^3), for n > 0. - Francesco Daddi, Aug 02 2011
a(n) = A002378(n) + floor(sqrt(A002378(n))); pronic number + its root. - Fred Daniel Kline, Sep 16 2011
a(n-1) = A008833(n) * A068310(n) for n > 1. - Reinhard Zumkeller, Nov 26 2011
G.f.: U(0) where U(k) = -1 + (k+1)^2/(1 - x/(x + (k+1)^2/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = 15*C(n+4,3)*C(n+4,5)/(C(n+4,2)*C(n+4,4)). - Gary Detlefs, Aug 05 2013
a(n) = (n+2)!/((n-1)! + n!), n > 0. - Ivan N. Ianakiev, Nov 11 2013
a(n) = 3*C(n+1,2) - C(n,2) for n >= 0. - Felix P. Muga II, Mar 11 2014
a(n) = (A016742(n+1) - 4)/4 for n >= 0. - Felix P. Muga II, Mar 11 2014
a(-2 - n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014
A253607(a(n)) = 1. - Reinhard Zumkeller, Jan 05 2015
E.g.f.: x*(x + 3)*exp(x). - Ilya Gutkovskiy, Jun 03 2016
For n >= 1, a(n^2 + n - 2) = a(n-1) * a(n). - Miko Labalan, Oct 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/4. - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2.
Product_{n>=1} (1 - 1/a(n)) = -sqrt(2)*sin(sqrt(2)*Pi)/Pi. (End)
a(n) = A000290(n+2) - n*2. See Bounded Squares illustration. - Leo Tavares, Oct 05 2021
From Leo Tavares, Oct 10 2021: (Start)
a(n) = A008585(n) + 2*A000217(n-1). See Trapezoids illustration.
2*A005563 = A054000(n+1). See Trapagons illustration.
a(n) = 2*A000217(n) + n. (End)
a(n) = (n+2)!!/(n-2)!! for n > 1. - Jacob Szlachetka, Jan 02 2022
EXAMPLE
G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
MATHEMATICA
Table[n^2 - 1, {n, 42}] (* Zerinvary Lajos, Mar 21 2007 *)
ListCorrelate[{1, 2}, Range[-1, 50], {1, -1}, 0, Plus, Times] (* Harvey P. Dale, Aug 29 2015 *)
Range[20]^2 - 1 (* Eric W. Weisstein, Aug 16 2017 *)
Table[n (n + 2), {n, 20}] (* Eric W. Weisstein, Nov 21 2024 *)
CoefficientList[Series[(-3 + x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 21 2024 *)
LinearRecurrence[{3, -3, 1}, {3, 8, 15}, 20] (* Eric W. Weisstein, Nov 21 2024 *)
PROG
(PARI) a(n)=n*(n+2) \\ Charles R Greathouse IV, Dec 22 2011
(PARI) concat(0, Vec(x*(3-x)/(1-x)^3 + O(x^90))) \\ Altug Alkan, Oct 22 2015
(Maxima) makelist(n*(n+2), n, 0, 56); /* Martin Ettl, Oct 15 2012 */
(Haskell)
a005563 n = n * (n + 2)
a005563_list = zipWith (*) [0..] [2..] -- Reinhard Zumkeller, Dec 16 2012
(Magma) [n*(n+2): n in [0..60]]; // G. C. Greubel, Mar 29 2024
(SageMath) [n*(n+2) for n in range(61)] # G. C. Greubel, Mar 29 2024
KEYWORD
nonn,easy,changed
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
More terms from N. J. A. Sloane, Aug 01 2010
STATUS
approved
a(n) = 6*a(n-1) - a(n-2) + 2 with a(0) = 0, a(1) = 3.
(Formerly M3074 N1247)
+10
154
0, 3, 20, 119, 696, 4059, 23660, 137903, 803760, 4684659, 27304196, 159140519, 927538920, 5406093003, 31509019100, 183648021599, 1070379110496, 6238626641379, 36361380737780, 211929657785303, 1235216565974040, 7199369738058939, 41961001862379596, 244566641436218639
OFFSET
0,2
COMMENTS
Consider all Pythagorean triples (X, X+1, Z) ordered by increasing Z; sequence gives X values.
Numbers n such that triangular number t(n) (see A000217) = n(n+1)/2 is a product of two consecutive integers (cf. A097571).
Members of Diophantine pairs. Solution to a(a+1) = 2b(b+1) in natural numbers including 0; a = a(n), b = b(n) = A053141(n); The solution of a special case of a binomial problem of H. Finner and K. Strassburger (strass(AT)godot.dfi.uni-duesseldorf.de).
The index of all triangular numbers T(a(n)) for which 4T(n)+1 is a perfect square.
The three sequences x (A001652), y (A046090) and z (A001653) may be obtained by setting u and v equal to the Pell numbers (A000129) in the formulas x = 2uv, y = u^2 - v^2, z = u^2 + v^2 [Joseph Wiener and Donald Skow]. - Antonio Alberto Olivares, Dec 22 2003
All Pythagorean triples {X(n), Y(n)=X(n)+1, Z(n)} with X<Y<Z, may be recursively generated through the mapping W(n) -> M*W(n), where W(n)=transpose of vector [X(n) Y(n) Z(n)] and M a 3 X 3 matrix given by [2 1 2 / 1 2 2 / 2 2 3]. - Lekraj Beedassy, Aug 14 2006
Let b(n) = A053141 then a(n)*b(n+1) = b(n)*a(n+1) + b(n). - Kenneth J Ramsey, Sep 22 2007
In general, if b(n) = A053141(n), then a(n)*b(n+k) = a(n+k)*b(n)+b(k); e.g., 3*84 = 119*2+14; 3*2870 = 4059*2+492; 20*2870 = 5741*14+84. - Charlie Marion, Nov 19 2007
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2) = A156035. - Klaus Brockhaus, Feb 17 2009
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with p<r then s-r=p+q+1. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = y^2 with p<r then r=3p+2q+1 and s=4p+3q+2. - Mohamed Bouhamida, Sep 02 2009
a(n+k) = A001541(k)*a(n) + A001542(k)*A001653(n+1) + A001108(k). - Charlie Marion, Dec 10 2010
The numbers 3*A001652 = (0, 9, 60, 357, 2088, 12177, 70980, ...) are all the nonnegative values of X such that X^2 + (X+3)^2 = Z^2 (Z is in A075841). - Bruno Berselli, Aug 26 2010
Let T(n) = n*(n+1)/2 (the n-th triangular number). For n > 0,
T(a(n) + 2*k*A001653(n+1)) = 2*T(A053141(n-1) + k*A002315(n)) + k^2 and
T(a(n) + (2*k+1)*A001653(n+1)) = (A001109(n+1) + k*A002315(n))^2 + k*(k+1).
Also (a(n) + k*A001653(n))^2 + (a(n) + k*A001653(n) + 1)^2 = (A001653(n+1) + k*A002315(n))^2 + k^2. - Charlie Marion, Dec 09 2010
For n>0, A143608(n) divides a(n). - Kenneth J Ramsey, Jun 28 2012
Set a(n)=p; a(n)+1=q; the generated triple x=p^2+pq; y=q^2+pq; k=p^2+q^2 satisfies x^2+y^2=k(x+y). - Carmine Suriano, Dec 17 2013
The arms of the triangle are found with (b(n),c(n)) for 2*b(n)*c(n) and c(n)^2 - b(n)^2. Let b(1) = 1 and c(1) = 2, then b(n) = c(n-1) and c(n) = 2*c(n-1) + b(n-1). Alternatively, b(n) = c(n-1) and c(n) equals the nearest integer to b(n)*(1+sqrt(2)). - J. M. Bergot, Oct 09 2014
Conjecture: For n>1 a(n) is the index of the first occurrence of n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015
Numbers m such that Product_{k=1..m} (4*k^4+1) is a square (see A274307). - Chai Wah Wu, Jun 21 2016
Numbers m such that m^2+(m+1)^2 is a square. - César Aguilera, Aug 14 2017
For integers a and d, let P(a,d,1) = a, P(a,d,2) = a+d, and, for n>2, P(a,d,n) = 2*P(a,d,n-1) + P(a,d,n-2). Further, let p(n) = Sum_{i=1..2n} P(a,d,i). Then p(n)^2 + (p(n)+d)^2 + a^2 = P(a,d,2n+1)^2 + d^2. When a = 1 and d = 1, p(n) = a(n) and P(a,d,n) = A000129(n), the n-th Pell number. - Charlie Marion, Dec 08 2018
The terms of this sequence satisfy the Diophantine equation k^2 + (k+1)^2 = m^2, which is equivalent to (2k+1)^2 - 2*m^2 = -1. Now, with x=2k+1 and y=m, we get the Pell-Fermat equation x^2 - 2*y^2 = -1. The solutions (x,y) of this equation are respectively in A002315 and A001653. The relation k = (x-1)/2 explains Lekraj Beedassy's Nov 25 2003 formula. Thus, the corresponding numbers m = y, which express the length of the hypotenuse of these right triangles (k,k+1,m) are in A001653. - Bernard Schott, Mar 10 2019
Members of Diophantine pairs. Related to solutions of p^2 = 2q^2 + 2 in natural numbers; p = p(n) = 2*sqrt(4T(a(n))+1), q = q(n) = sqrt(8*T(a(n))+1). Note that this implies that 4*T(a(n))+1 is a perfect square (numbers of the form 8*T(n)+1 are perfect squares for all n); these T(a(n))'s are the only solutions to the given Diophantine equation. - Steven Blasberg, Mar 04 2021
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), 181-193.
Christian Aebi and Grant Cairns, Lattice equable quadrilaterals III: tangential and extangential cases, Integers (2023) Vol. 23, #A48.
Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
T. W. Forget and T. A. Larkin, Pythagorean triads of the form X, X+1, Z described by recurrence sequences, Fib. Quart., 6 (No. 3, 1968), 94-104.
Thibault Gauthier, Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic, arXiv:1910.11797 [cs.AI], 2019. See also EPiC Series in Computing, (2020) Vol. 73, 230-248.
L. J. Gerstein, Pythagorean triples and inner products, Math. Mag., 78 (2005), 205-213.
A. Martin, Table of prime rational right-angled triangles, The Mathematical Magazine, 2 (1910), 297-324.
A. Martin, Table of prime rational right-angled triangles (annotated scans of a few pages)
A. Martin, On rational right-angled triangles, Proceedings of the Fifth International Congress of Mathematicians (Cambridge, 22-28 August 1912).
S. P. Mohanty, Which triangular numbers are products of three consecutive integers, Acta Math. Hungar., 58 (1991), 31-36.
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Burkard Polster, Nice merging together, Mathologer video (2015).
B. Polster and M. Ross, Marching in squares, arXiv:1503.04658 [math.HO], 2015.
Zhang Zaiming, Problem #502, Pell's Equation - Once Again, The College Mathematics Journal, 25 (1994), 241-243.
FORMULA
G.f.: x *(3 - x) / ((1 - 6*x + x^2) * (1 - x)). - Simon Plouffe in his 1992 dissertation
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). a_{n} = -1/2 + ((1-2^{1/2})/4)*(3 - 2^{3/2})^n + ((1+2^{1/2})/4)*(3 + 2^{3/2})^n. - Antonio Alberto Olivares, Oct 13 2003
a(n) = a(n-2) + 4*sqrt(2*(a(n-1)^2)+2*a(n-1)+1). - Pierre CAMI, Mar 30 2005
a(n) = (sinh((2*n+1)*log(1+sqrt(2)))-1)/2 = (sqrt(1+8*A029549)-1)/2. - Bill Gosper, Feb 07 2010
Binomial(a(n)+1,2) = 2*binomial(A053141(n)+1,2) = A029549(n). See A053141. - Bill Gosper, Feb 07 2010
Let b(n) = A046090(n) and c(n) = A001653(n). Then for k>j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n<0, a(n) = -b(-n-1). Also a(n)*a(n+2*k+1) + b(n)*b(n+2*k+1) + c(n)*c(n+2*k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2*k) + b(n)*b(n+2*k) + c(n)*c(n+2*k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
a(n)*a(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2 = A084703(n+1). - Charlie Marion, Jul 01 2003
For n and j >= 1, Sum_{k=0..j} A001653(k)*a(n) - Sum_{k=0...j-1} A001653(k)*a(n-1) + A053141(j) = A001109(j+1)*a(n) - A001109(j)*a(n-1) + A053141(j) = a(n+j). - Charlie Marion, Jul 07 2003
Sum_{k=0...n} (2*k+1)*a(n-k) = A001109(n+1) - A000217(n+1). - Charlie Marion, Jul 18 2003
a(n) = A055997(n) - 1 + sqrt(2*A055997(n)*A001108(n)). - Charlie Marion, Jul 21 2003
a(n) = {A002315(n) - 1}/2. - Lekraj Beedassy, Nov 25 2003
a(2*n+k) + a(k) + 1 = A001541(n)*A002315(n+k). For k>0, a(2*n+k) - a(k-1) = A001541(n+k)*A002315(n); e.g., 803760-119 = 19601*41. - Charlie Marion, Mar 17 2003
a(n) = (A001653(n+1) - 3*A001653(n) - 2)/4. - Lekraj Beedassy, Jul 13 2004
a(n) = {2*A084159(n) - 1 + (-1)^(n+1)}/2. - Lekraj Beedassy, Jul 21 2004
a(n+1) = 3*a(n) + sqrt(8*a(n)^2 + 8*a(n) +4) + 1, a(1)=0. - Richard Choulet, Sep 18 2007
As noted (Sep 20 2006), a(n) = 5*(a(n-1) + a(n-2)) - a(n-3) + 4. In general, for n > 2*k, a(n) = A001653(k)*(a(n-k) + a(n-k-1) + 1) - a(n-2*k-1) - 1. Also a(n) = 7*(a(n-1) - a(n-2)) + a(n-3). In general, for n > 2*k, A002378(k)*(a(n-k)-a(n-k-1)) + a(n-2*k-1). - Charlie Marion, Dec 26 2007
In general, for n >= k >0, a(n) = (A001653(n+k) - A001541(k) * A001653(n) - 2*A001109(k-1))/(4*A001109(k-1)); e.g., 4059 = (33461-3*5741-2*1)/(4*1); 4059 = (195025-17*5741-2*6)/(4*6). - Charlie Marion, Jan 21 2008
From Charlie Marion, Jan 04 2010: (Start)
a(n) = ( (1 + sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1) - 2)/4 = (A001333(2n+1) - 1)/2.
a(2*n+k-1) = Pell(2*n-1)*Pell(2*n+2*k) + Pell(2*n-2)*Pell(2*n+2*k+1) + A001108(k+1);
a(2*n+k) = Pell(2*n)*Pell(2*n+2*k+1) + Pell(2*n-1)*Pell(2*n+2*k+2) - A055997(k+2). (End)
a(n) = A048739(2*n-1) for n > 0. - Richard R. Forberg, Aug 31 2013
a(n+1) = 3*a(n) + 2*A001653(n) + 1 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 + (a(n)+1)^2 = A001653(n+1)^2. - Pierre CAMI, Mar 30 2005; clarified by Hermann Stamm-Wilbrandt, Aug 31 2014
a(n+1) = 3*A001541(n) + 10*A001109(n) + A001108(n). - Hermann Stamm-Wilbrandt, Sep 09 2014
For n>0, a(n) = Sum_{k=1..2*n} A000129(k). - Charlie Marion, Nov 07 2015
a(n) = 3*A053142(n) - A053142(n-1). - R. J. Mathar, Feb 05 2016
E.g.f.: (1/4)*(-2*exp(x) - (sqrt(2) - 1)*exp((3-2*sqrt(2))*x) + (1 + sqrt(2))*exp((3+2*sqrt(2))*x)). - Ilya Gutkovskiy, Apr 11 2016
a(n) = A001108(n) + 2*sqrt(A000217(A001108(n))). - Dimitri Papadopoulos, Jul 06 2017
a(A000217(n-1)) = ((A001653(n)+1)/2) * ((A001653(n)-1)/2), n > 1. - Ezhilarasu Velayutham, Mar 10 2019
a(n) = ((a(n-1)+1)*(a(n-1)-3))/a(n-2) for n > 2. - Vladimir Pletser, Apr 08 2020
In general, for each k >= 0, a(n) = ((a(n-k)+a(k-1)+1)*(a(n-k)-a(k)))/a(n-2*k) for n > 2*k. - Charlie Marion, Dec 27 2020
A generalization of the identity a(n)^2 + A046090(n)^2 = A001653(n+1)^2 follows. Let P(k,n) be the n-th k-gonal number. Then P(k,a(n)) + P(k,A046090(n)) = P(k,A001653(n+1)) + (4-k)*A001109(n). - Charlie Marion, Dec 07 2021
a(n) = A046090(n)-1 = A002024(A029549(n)). - Pontus von Brömssen, Sep 11 2024
EXAMPLE
The first few triples are (0,1,1), (3,4,5), (20,21,29), (119,120,169), ...
MAPLE
A001652 := proc(n)
option remember;
if n <= 1 then
op(n+1, [0, 3]) ;
else
6*procname(n-1)-procname(n-2)+2 ;
end if;
end proc: # R. J. Mathar, Feb 05 2016
MATHEMATICA
LinearRecurrence[{7, -7, 1}, {0, 3, 20}, 30] (* Harvey P. Dale, Aug 19 2011 *)
With[{c=3+2*Sqrt[2]}, NestList[Floor[c*#]+3&, 3, 30]] (* Harvey P. Dale, Oct 22 2012 *)
CoefficientList[Series[x (3 - x)/((1 - 6 x + x^2) (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2014 *)
Table[(LucasL[2*n + 1, 2] - 2)/4, {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
PROG
(PARI) {a(n) = subst( poltchebi(n+1) - poltchebi(n) - 2, x, 3) / 4}; /* Michael Somos, Aug 11 2006 */
(PARI) concat(0, Vec(x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^50))) \\ Altug Alkan, Nov 08 2015
(PARI) {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
for(n=0, 30, print1(round((Q(2*n+1) - 2)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
(Magma) Z<x>:=PolynomialRing(Integers()); N<r2>:=NumberField(x^2-2); S:=[ (-2+(r2+1)*(3+2*r2)^n-(r2-1)*(3-2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Feb 17 2009
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3-x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
(Haskell)
a001652 n = a001652_list !! n
a001652_list = 0 : 3 : map (+ 2)
(zipWith (-) (map (* 6) (tail a001652_list)) a001652_list)
-- Reinhard Zumkeller, Jan 10 2012
(GAP) a:=[0, 3];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]+2; od; a; # Muniru A Asiru, Dec 08 2018
(Sage) (x*(3-x)/((1-6*x+x^2)*(1-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 08 2019
CROSSREFS
Cf. A046090(n) = -a(-1-n).
Cf. A001108, A143608, A089950 (partial sums), A156035.
Cf. numbers m such that k*A000217(m)+1 is a square: A006451 for k=1; m=0 for k=2; A233450 for k=3; this sequence for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013
Cf. A002315, A001653 (solutions of x^2 - 2*y^2 = -1).
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Wolfdieter Lang, Feb 10 2000
STATUS
approved
a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.
(Formerly M1701)
+10
38
2, 6, 34, 198, 1154, 6726, 39202, 228486, 1331714, 7761798, 45239074, 263672646, 1536796802, 8957108166, 52205852194, 304278004998, 1773462177794, 10336495061766, 60245508192802, 351136554095046, 2046573816377474, 11928306344169798, 69523264248641314
OFFSET
0,1
COMMENTS
Two times Chebyshev polynomials of the first kind evaluated at 3.
Also 2(a(2*n)-2) and a(2*n+1)-2 are perfect squares. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Chebyshev polynomials of the first kind evaluated at 3, then multiplied by 2. - Michael Somos, Apr 07 2003
Also gives solutions > 2 to the equation x^2 - 3 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
Output of Lu and Wu's formula for the number of perfect matchings of an m X n Klein bottle where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
It appears that for prime P = 8*n +- 3, that a((P-1)/2) == -6 (mod P) and for all composites C = 8*n +- 3, there is at least one i < (C-1)/2 such that a(i) == -6 (mod P). Only a few of the primes P of the form 8*n +-3, e.g., 29, had such an i less than (P-1)/2. As for primes P = 8*n +- 1, it seems that the sum of the two adjacent terms, a((P-1)/2) and a((P+1)/2), is congruent to 8 (mod P). - Kenneth J Ramsey, Feb 14 2012 and Mar 05 2012
For n >= 1, a(n) is also the curvature of circles (rounded to the nearest integer) successively inscribed toward angle 90 degree of tangent lines, starting with a unit circle. The expansion factor is 5.828427... or 1/(3 - 2*sqrt(2)), which is also 3 + 2*sqrt(2) or A156035. See illustration in links. - Kival Ngaokrajang, Sep 04 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 6*x*y + y^2 + 32 = 0. - Colin Barker, Feb 08 2014
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 198.
Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seyed Hassan Alavi, Ashraf Daneshkhah, and Cheryl E. Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See Lemma 7.9 p. 21.
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence K_3.
S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), #12.1.4.
Tanya Khovanova, Recursive Sequences
W. Lu and F. Y. Wu, Close-packed dimers on nonorientable surfaces, arXiv:cond-mat/0110035 [cond-mat.stat-mech], 2001-2002; Physics Letters A, 293(2002), 235-246. [From Sarah-Marie Belcastro, Jul 04 2009]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
FORMULA
G.f.: (2-6*x)/(1 - 6*x + x^2).
a(n) = (3+2*sqrt(2))^n + (3-2*sqrt(2))^n = 2*A001541(n).
For all sequence elements n, 2*n^2 - 8 is a perfect square. Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
a(2*n)+2 is a perfect square, 2(a(2*n+1)+2) is a perfect square. a(n), a(n-1) and A077445(n), n > 0, satisfy the Diophantine equation x^2 + y^2 - 3*z^2 = -8. - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n+1) is the trace of n-th power of matrix {{6, -1}, {1, 0}}. - Artur Jasinski, Apr 22 2008
a(n) = Product_{r=1..n} (4*sin^2((4*r-1)*Pi/(4*n)) + 4). [Lu/Wu] - Sarah-Marie Belcastro, Jul 04 2009
a(n) = (1 + sqrt(2))^(2*n) + (1 + sqrt(2))^(-2*n). - Gerson Washiski Barbosa, Sep 19 2010
For n > 0, a(n) = A001653(n) + A001653(n+1). - Charlie Marion, Dec 27 2011
For n > 0, a(n) = b(4*n)/b(2*n) where b(n) is the Pell sequence, A000129. - Kenneth J Ramsey, Feb 14 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 3 - 2*sqrt(2). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.16585 37786 96882 80543 ... = 2 + 1/(6 + 1/(34 + 1/(198 + ...))). Cf. A174501.
Also F(-alpha) = 0.83251219269380007634 ... has the continued fraction representation 1 - 1/(6 - 1/(34 - 1/(198 - ...))) and the simple continued fraction expansion 1/(1 + 1/((6-2) + 1/(1 + 1/((34-2) + 1/(1 + 1/((198-2) + 1/(1 + ...))))))). Cf. A174501 and A003500.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((6^2-4) + 1/(1 + 1/((34^2-4) + 1/(1 + 1/((198^2-4) + 1/(1 + ...))))))).
(End)
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
Inverse binomial transform of A228568 [Bhadouria]. - R. J. Mathar, Nov 10 2013
From Peter Bala, Oct 16 2019: (Start)
4*Sum_{n >= 1} 1/(a(n) - 8/a(n)) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 4/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/4 - 8*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 8)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 4*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 4)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(3-2*sqrt(2)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(2*sqrt(2)-3))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A067902.
(End)
E.g.f.: 2*exp(3*x)*cosh(2*sqrt(2)*x). - Stefano Spezia, Oct 18 2019
a(2*n)+2 = a(n)^2. - Greg Dresden and Shraya Pal, Jun 29 2021
MAPLE
A003499:=-2*(-1+3*z)/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
a[0]=2; a[1]=6; a[n_]:= 6a[n-1] -a[n-2]; Table[a[n], {n, 0, 25}] (* Robert G. Wilson v, Jan 30 2004 *)
Table[Tr[MatrixPower[{{6, -1}, {1, 0}}, n]], {n, 25}] (* Artur Jasinski, Apr 22 2008 *)
LinearRecurrence[{6, -1}, {2, 6}, 25] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
CoefficientList[Series[(2-6x)/(1-6x+x^2), {x, 0, 25}], x] (* Vincenzo Librandi, Jun 07 2013 *)
(* From Eric W. Weisstein, Apr 17 2018 *)
Table[(3-2Sqrt[2])^n + (3+2Sqrt[2])^n, {n, 0, 25}]//Expand
Table[(1+Sqrt[2])^(2n) + (1-Sqrt[2])^(2n), {n, 0, 25}]//FullSimplify
Join[{2}, Table[Fibonacci[4n, 2]/Fibonacci[2n, 2], {n, 25}]]
2*ChebyshevT[Range[0, 25], 3] (* End *)
PROG
(PARI) a(n)=2*real((3+quadgen(32))^n)
(PARI) a(n)=2*subst(poltchebi(abs(n)), x, 3)
(PARI) a(n)=if(n<0, a(-n), polsym(1-6*x+x^2, n)[n+1])
(Sage) [lucas_number2(n, 6, 1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
(Magma) I:=[2, 6]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 16 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (2-6*x)/(1 - 6*x + x^2) )); // Marius A. Burtea, Jan 16 2020
(GAP) a:=[2, 6];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
CROSSREFS
A081555(n) = 1 + a(n).
Bisection of A002203.
First row of array A103999.
Row 1 * 2 of array A188645. A174501.
KEYWORD
nonn,easy
STATUS
approved
Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives X+1 values.
+10
38
1, 4, 21, 120, 697, 4060, 23661, 137904, 803761, 4684660, 27304197, 159140520, 927538921, 5406093004, 31509019101, 183648021600, 1070379110497, 6238626641380, 36361380737781, 211929657785304, 1235216565974041, 7199369738058940, 41961001862379597, 244566641436218640
OFFSET
0,2
COMMENTS
Solution to a*(a-1) = 2b*(b-1) in natural numbers: a = a(n), b = b(n) = A011900(n).
n such that n^2 = (1/2)*(n+floor(sqrt(2)*n*floor(sqrt(2)*n))). - Benoit Cloitre, Apr 15 2003
Place a(n) balls in an urn, of which b(n) = A011900(n) are red; draw 2 balls without replacement; 2*Probability(2 red balls) = Probability(2 balls); this is equivalent to the Pell equation A(n)^2-2*B(n)^2 = -1 with a(n) = (A(n)+1)/2; b(n) = (B(n)+1)/2; and the fundamental solution (7;5) and the solution (3;2) for the unit form. - Paul Weisenhorn, Aug 03 2010
Find base x in which repdigit yy has a square that is repdigit zzzz, corresponding to Diophantine equation zzzz_x = (yy_x)^2; then, solution z = a(n) with x = A002315(n) and y = A001653(n+1) for n >= 1 (see Maurice Protat reference). - Bernard Schott, Dec 21 2022
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
Maurice Protat, Des Olympiades à l'Agrégation, De zzzz_x = (yy_x)^2 à Pell-Fermat, Problème 23, pp. 52-54, Ellipses, Paris, 1997.
LINKS
T. W. Forget and T. A. Larkin, Pythagorean triads of the form X, X+1, Z described by recurrence sequences, Fib. Quart., 6 (No. 3, 1968), 94-104.
L. J. Gerstein, Pythagorean triples and inner products, Math. Mag., 78 (2005), 205-213.
H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
Eric Weisstein's World of Mathematics, Pythagorean Triple
FORMULA
a(n) = (-1+sqrt(1+8*b(n)*(b(n)+1)))/2 with b(n) = A011900(n). [corrected by Michel Marcus, Dec 23 2022]
a(n) = 6*a(n-1) - a(n-2) - 2, n >= 2, a(0) = 1, a(1) = 4.
a(n) = (A(n+1) - 3*A(n) + 2)/4 with A(n) = A001653(n).
A001652(n) = -a(-1-n).
From Barry E. Williams, May 03 2000: (Start)
G.f.: (1-3*x)/((1-6*x+x^2)*(1-x)).
a(n) = partial sums of A001541(n). (End)
From Charlie Marion, Jul 01 2003: (Start)
A001652(n)*A001652(n+1) + a(n)*a(n+1) = A001542(n+1)^2 = A084703(n+1).
Let a(n) = A001652(n), b(n) = this sequence and c(n) = A001653(n). Then for k > j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n < 0, a(n) = -b(-n-1). Also a(n)*a(n+2k+1) + b(n)*b(n+2k+1) + c(n)*c(n+2k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2k) + b(n)*b(n+2k) + c(n)*c(n+2k) = 2*c(n+k)^2. (End)
a(n) = 1/2 + ((1-2^(1/2))/4)*(3 - 2^(3/2))^n + ((1+2^(1/2))/4)*(3 + 2^(3/2))^n. - Antonio Alberto Olivares, Oct 13 2003
2*a(n) = 2*A084159(n) + 1 + (-1)^(n+1) = 2*A046729(n) + 1 - (-1)^(n+1). - Lekraj Beedassy, Jul 16 2004
a(n) = A001109(n+1) - A053141(n). - Manuel Valdivia, Apr 03 2010
From Paul Weisenhorn, Aug 03 2010: (Start)
a(n+1) = round((1+(7+5*sqrt(2))*(3+2*sqrt(2))^n)/2);
b(n+1) = round((2+(10+7*sqrt(2))*(3+2*sqrt(2))^n)/4) = A011900(n+1).
(End)
a(n)*(a(n)-1)/2 = b(n)*b(n+1) and 2*a(n) - 1 = b(n) + b(n+1), where b(n) = A001109. - Kenneth J Ramsey, Apr 24 2011
T(a(n)) = A011900(n)^2 + A001109(n), where T(n) is the n-th triangular number. See also A001653. - Charlie Marion, Apr 25 2011
a(0)=1, a(1)=4, a(2)=21, a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Harvey P. Dale, Apr 13 2012
Limit_{n->oo} a(n+1)/a(n) = 3 + 2*sqrt(2) = A156035. - Ilya Gutkovskiy, Jul 10 2016
a(n) = A001652(n)+1. - Dimitri Papadopoulos, Jul 06 2017
a(n) = (A002315(n) + 1)/2. - Bernard Schott, Dec 21 2022
E.g.f.: (exp(x) + exp(3*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2. - Stefano Spezia, Mar 16 2024
a(n) = A002024(A029549(n))+1. - Pontus von Brömssen, Sep 11 2024
EXAMPLE
For n=4: a(4)=697; b(4)=493; 2*binomial(493,2)=485112=binomial(697,2). - Paul Weisenhorn, Aug 03 2010
MAPLE
Digits:=100: seq(round((1+(7+5*sqrt(2))*(3+2*sqrt(2))^(n-1))/2)/2, n=0..20); # Paul Weisenhorn, Aug 03 2010
MATHEMATICA
Join[{1}, #+1&/@With[{c=3+2Sqrt[2]}, NestList[Floor[c #]+3&, 3, 20]]] (* Harvey P. Dale, Aug 19 2011 *)
LinearRecurrence[{7, -7, 1}, {1, 4, 21}, 25] (* Harvey P. Dale, Apr 13 2012 *)
a[n_] := (2-ChebyshevT[n, 3]+ChebyshevT[n+1, 3])/4; Array[a, 21, 0] (* Jean-François Alcover, Jul 10 2016, adapted from PARI *)
PROG
(PARI) a(n)=(2-subst(poltchebi(abs(n))-poltchebi(abs(n+1)), x, 3))/4
(PARI) x='x+O('x^30); Vec((1-3*x)/((1-6*x+x^2)*(1-x))) \\ G. C. Greubel, Jul 15 2018
(Haskell)
a046090 n = a046090_list !! n
a046090_list = 1 : 4 : map (subtract 2)
(zipWith (-) (map (* 6) (tail a046090_list)) a046090_list)
-- Reinhard Zumkeller, Jan 10 2012
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
CROSSREFS
Other 2 sides are A001652 and A001653.
See comments in A301383.
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Wolfdieter Lang
Comment moved to A001653 by Claude Morin, Sep 22 2023
STATUS
approved
Decimal expansion of 2 + 2*sqrt(2).
+10
22
4, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4
OFFSET
1,1
COMMENTS
Side length of smallest square containing five circles of radius 1. - Charles R Greathouse IV, Apr 05 2011
Equals n + n/(n +n/(n +n/(n +....))) for n = 4. See also A090388. - Stanislav Sykora, Jan 23 2014
Also the area of a regular octagon with unit edge length. - Stanislav Sykora, Apr 12 2015
The positive solution to x^2 - 4*x - 4 = 0. The negative solution is -1 * A163960 = -0.82842... . - Michal Paulovic, Dec 12 2023
FORMULA
Equals 1 + A086178 = 2*A014176. - R. J. Mathar, Sep 03 2007
From Michal Paulovic, Dec 12 2023: (Start)
Equals A010466 + 2.
Equals A156035 - 1.
Equals A157258 - 5.
Equals A163960 + 4.
Equals A365823 - 2.
Equals [4; 1, 4, ...] (periodic continued fraction expansion).
Equals sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * ...)))). (End)
EXAMPLE
4.828427124746190097603377448419396157139343750...
MATHEMATICA
RealDigits[2+2Sqrt[2], 10, 120][[1]] (* Harvey P. Dale, Mar 11 2015 *)
PROG
(PARI) 2*(1 + sqrt(2)) \\ G. C. Greubel, Jul 03 2017
CROSSREFS
Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A256853, A178816, A256854, A178809.
KEYWORD
easy,nonn,cons
AUTHOR
Felix Tubiana, Feb 05 2004
EXTENSIONS
Better definition from Rick L. Shepherd, Jul 02 2004
STATUS
approved
a(n) = 6*a(n-1) - a(n-2) - 2 with a(0) = 1, a(1) = 3.
+10
21
1, 3, 15, 85, 493, 2871, 16731, 97513, 568345, 3312555, 19306983, 112529341, 655869061, 3822685023, 22280241075, 129858761425, 756872327473, 4411375203411, 25711378892991, 149856898154533, 873430010034205, 5090723162050695, 29670908962269963, 172934730611569081
OFFSET
0,2
COMMENTS
Members of Diophantine pairs.
Solution to b*(b-1) = 2*a*(a-1) in natural numbers; a = a(n), b = b(n) = A046090(n).
Also the indices of centered octagonal numbers which are also centered square numbers. - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 4*x^2 - 8*y^2 - 4*x + 8*y = 0. - Colin Barker, Jan 01 2015
Also the number of perfect matchings on a triangular lattice of width 3 and length n. - Sergey Perepechko, Jul 11 2019
REFERENCES
Mario Velucchi "The Pell's equation ... an amusing application" in Mathematics and Informatics Quarterly, to appear 1997.
LINKS
H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
S. N. Perepechko, Number of perfect matchings on triangular lattices of fixed width, DIMA'2015 slides. [see: page 12]
FORMULA
a(n) = (A001653(n+1) + 1)/2.
a(n) = (((1+sqrt(2))^(2*n-1) - (1-sqrt(2))^(2*n-1))/sqrt(8) + 1)/2.
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3); a(1) = 1, a(2) = 3, a(3) = 15. Also a(n) = 1/2 + ( (1-sqrt(2))/(-4*sqrt(2)) )*(3-2*sqrt(2))^n + ( (1+sqrt(2))/(4*sqrt(2)) )*(3+2*sqrt(2))^n. - Antonio Alberto Olivares, Dec 23 2003
Sqrt(2) = Sum_{n>=0} 1/a(n); a(n) = a(n-1) + floor(1/(sqrt(2) - Sum_{k=0..n-1} 1/a(k))) (n>0) with a(0)=1. - Paul D. Hanna, Jan 25 2004
For n>k, a(n+k) = A001541(n)*A001653(k) - A053141(n-k-1); e.g., 493 = 99*5 - 2. For n<=k, a(n+k)=A001541(n)*A001653(k) - A053141(k-n); e.g., 85 = 3*29 - 2. - Charlie Marion, Oct 18 2004
a(n+1) = 3*a(n) - 1 + sqrt(8*a(n)^2 - 8*a(n) + 1), a(1)=1. - Richard Choulet, Sep 18 2007
a(n+1) = a(n) * (a(n) + 2) / a(n-1) for n>=1 with a(0)=1 and a(1)=3. - Paul D. Hanna, Apr 08 2012
G.f.: (1 - 4*x + x^2)/((1-x)*(1 - 6*x + x^2)). - R. J. Mathar, Oct 26 2009
Sum_{k=a(n)..A001109(n+1)} k = a(n)*A001109(n+1) = A011906(n+1). Example n=2, 3+4+5+6=18, 3*6=18. - Paul Cleary, Dec 05 2015
a(n) = (sqrt(1+8*A001109(n+1)^2)+1)/2 - A001109(n+1). - Robert Israel, Dec 16 2015
a(n) = a(-1-n) for all n in Z. - Michael Somos, Feb 23 2019
E.g.f.: (2*exp(x) + exp(3*x)*(2*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/4. - Stefano Spezia, Mar 16 2024
a(n) = A053141(n) + 1 = A000194(A029549(n))+1 = A002024(A075528(n))+1. - Pontus von Brömssen, Sep 11 2024
EXAMPLE
G.f. = 1 + 3*x + 15x^2 + 85*x^3 + 493*x^4 + 2871*x^5 + 16731*x^6 + ... - Michael Somos, Feb 23 2019
MAPLE
f:= gfun:-rectoproc({a(n)=6*a(n-1)-a(n-2)-2, a(0)=1, a(1)=3}, a(n), remember):
seq(f(n), n=0..40); # Robert Israel, Dec 16 2015
MATHEMATICA
a[0] = 1; a[1] = 3; a[n_]:= a[n]= 6 a[n-1] -a[n-2] -2; Table[a@ n, {n, 0, 40}] (* Michael De Vlieger, Dec 05 2015 *)
Table[(Fibonacci[2n + 1, 2] + 1)/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 16 2016 *)
LinearRecurrence[{7, -7, 1}, {1, 3, 15}, 40] (* Harvey P. Dale, Feb 16 2017 *)
a[ n_] := (4 + ChebyshevT[n, 3] + ChebyshevT[n + 1, 3])/8; (* Michael Somos, Feb 23 2019 *)
PROG
(PARI) Vec((1-4*x+x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Altug Alkan, Dec 06 2015
(Magma) I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2) - 2: n in [1..40]]; // Vincenzo Librandi, Dec 05 2015
(SageMath) [(1+lucas_number1(2*n+1, 2, -1))//2 for n in range(41)] # G. C. Greubel, Oct 17 2024
KEYWORD
nonn,easy
AUTHOR
Mario Velucchi (mathchess(AT)velucchi.it)
EXTENSIONS
More terms and comments from Wolfdieter Lang
STATUS
approved
Numbers n such that n(n - 1)/2 is a square.
+10
17
1, 2, 9, 50, 289, 1682, 9801, 57122, 332929, 1940450, 11309769, 65918162, 384199201, 2239277042, 13051463049, 76069501250, 443365544449, 2584123765442, 15061377048201, 87784138523762, 511643454094369, 2982076586042450, 17380816062160329, 101302819786919522
OFFSET
1,2
COMMENTS
Numbers n such that (n-th triangular number - n) is a square.
Gives solutions to A007913(2x)=A007913(x-1). - Benoit Cloitre, Apr 07 2002
Number of closed walks of length 2n on the grid graph P_2 X P_3. - Mitch Harris, Mar 06 2004
If x = A001109(n - 1), y = a(n) and z = x^2 + y, then x^4 + y^3 = z^2. - Bruno Berselli, Aug 24 2010
The product of any term a(n) with an even successor a(n + 2k) is always a square number. The product of any term a(n) with an odd successor a(n + 2k + 1) is always twice a square number. - Bradley Klee & Bill Gosper, Jul 22 2015
It appears that dividing even terms by two and taking the square root gives sequence A079496. - Bradley Klee, Jul 25 2015
The bisections of this sequence are a(2n - 1) = A055792(n) and a(2n) = A088920(n). - Bernard Schott, Apr 19 2020
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
P. Tauvel, Exercices d'Algèbre Générale et d'Arithmétique, Dunod, 2004, Exercice 35 pages 346-347.
LINKS
Dario Alpern, a^4+b^3=c^2.
Phil Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
Kenneth Ramsey, Generalized Proof re Square Triangular Numbers, message 62 in Triangular_and_Fibonacci_Numbers Yahoo group, Oct 10, 2011.
FORMULA
a(n) = 6*a(n - 1) - a(n - 2) - 2; n >= 3, a(1) = 1, a(2) = 2.
G.f.: x*(1 - 5*x + 2*x^2)/((1 - x)*(1 - 6*x + x^2)).
a(n) - 1 + sqrt(2*a(n)*(a(n) - 1)) = A001652(n - 1). - Charlie Marion, Jul 21 2003; corrected by Michel Marcus, Apr 20 2020
a(n) = IF(mod(n; 2)=0; (((1 - sqrt(2))^n + (1 + sqrt(2))^n)/2)^2; 2*((((1 - sqrt(2))^(n + 1) + (1 + sqrt(2))^(n + 1)) - (((1 - sqrt(2))^n + (1 + sqrt(2))^n)))/4)^2). The odd-indexed terms are a(2n + 1) = [A001333(2n)]^2; the even-indexed terms are a(2n) = [A001333(2n - 1)]^2 + 1 = 2*[A001653(n)]^2. - Antonio Alberto Olivares, Jan 31 2004; corrected by Bernard Schott, Apr 20 2020
A053141(n + 1) + a(n + 1) = A001541(n + 1) + A001109(n + 1). - Creighton Dement, Sep 16 2004
a(n) = (1/2) + (1/4)*(3+2*sqrt(2))^(n-1) + (1/4)*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Feb 21 2006; corrected by Michel Marcus, Apr 20 2020
a(n) = A001653(n)-A001652(n-1). - Charlie Marion, Apr 10 2006; corrected by Michel Marcus, Apr 20 2020
a(2k) = A001541(k)^2. - Alexander Adamchuk, Nov 24 2006
a(n) = 2*A001653(m)*A011900(n-m-1) +A002315(m)*A001652(n-m-1) - A001108(m) with m<n; otherwise, a(n) = 2*A001653(m)*A011900(m-n) - A002315(m)*A046090(m-n) - A001108(m). See Link to Generalized Proof re Square Triangular Numbers. - Kenneth J Ramsey, Oct 13 2011
a(n) = +7*a(n-1) -7*a(n-2) +1*a(n-3). - Joerg Arndt, Mar 06 2013
a(n) * a(n+2) = (A001108(n)-A001652(n)+3*A046090(n))^2. - Robert Israel, Jul 23 2015
sqrt(a(n+1)*a(n-1)) = a(n)+1 - Bradley Klee & Bill Gosper, Jul 25 2015
a(n) = 1 + sum{k=0..n-2} A002315(k). - David Pasino, Jul 09 2016; corrected by Michel Marcus, Apr 20 2020
E.g.f.: (2*exp(x) + exp((3-2*sqrt(2))*x) + exp((3+2*sqrt(2))*x))/4. - Ilya Gutkovskiy, Jul 09 2016
sqrt(a(n)*(a(n)-1)/2) = A001542(n)/2. - David Pasino, Jul 09 2016
Limit_{n -> infinity} a(n)/a(n-1) = A156035. - César Aguilera, Apr 07 2018
a(n) = (1/4)*(t^2 + t^(-2) + 2), where t = (1+sqrt(2))^(n-1). - Ridouane Oudra, Nov 29 2019
sqrt(a(n)) + sqrt(a(n) - 1) = (1 + sqrt(2))^(n - 1). - Ridouane Oudra, Nov 29 2019
sqrt(a(n)) - sqrt(a(n) - 1) = (-1 + sqrt(2))^(n - 1). - Bernard Schott, Apr 18 2020
MAPLE
A:= gfun:-rectoproc({a(n) = 6*a(n-1)-a(n-2)-2, a(1) = 1, a(2) = 2}, a(n), remember):
map(A, [$1..100]); # Robert Israel, Jul 22 2015
MATHEMATICA
Table[ 1/4*(2 + (3 - 2*Sqrt[2])^k + (3 + 2*Sqrt[2])^k ) // Simplify, {k, 0, 20}] (* Jean-François Alcover, Mar 06 2013 *)
CoefficientList[Series[(1 - 5 x + 2 x^2) / ((1 - x) (1 - 6 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
(1 + ChebyshevT[#, 3])/2 & /@ Range[0, 20] (* Bill Gosper, Jul 20 2015 *)
a[1]=1; a[2]=2; a[n_]:=(a[n-1]+1)^2/a[n-2]; a/@Range[25] (* Bradley Klee, Jul 25 2015 *)
LinearRecurrence[{7, -7, 1}, {1, 2, 9}, 30] (* Harvey P. Dale, Dec 06 2015 *)
PROG
(PARI) Vec((1-5*x+2*x^2)/((1-x)*(1-6*x+x^2))+O(x^66)) /* Joerg Arndt, Mar 06 2013 */
(PARI) t(n)=(1+sqrt(2))^(n-1);
for(k=1, 24, print1(round((1/4)*(t(k)^2 + t(k)^(-2) + 2)), ", ")) \\ Hugo Pfoertner, Nov 29 2019
(PARI) a(n) = (1 + polchebyshev(n-1, 1, 3))/2; \\ Michel Marcus, Apr 21 2020
(Magma) I:=[1, 2, 9]; [n le 3 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
CROSSREFS
A001109(n-1) = sqrt{[(a(n))^2 - (a(n))]/2}.
a(n) = A001108(n-1)+1.
A001110(n-1)=a(n)*(a(n)-1)/2.
Identical to A115599, but with additional leading term.
KEYWORD
easy,nice,nonn
AUTHOR
Barry E. Williams, Jun 14 2000
STATUS
approved
Numbers k such that (k^2 + 4)/2 is a square.
+10
17
2, 14, 82, 478, 2786, 16238, 94642, 551614, 3215042, 18738638, 109216786, 636562078, 3710155682, 21624372014, 126036076402, 734592086398, 4281516441986, 24954506565518, 145445522951122, 847718631141214, 4940866263896162, 28797478952235758, 167844007449518386
OFFSET
1,1
COMMENTS
The equation "(k^2 + 4)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = -4.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(2)). - Thomas Baruchel, Sep 15 2003
Equivalently, 2*n^2 + 8 is a square.
Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 2 + n^2/2. - Ctibor O. Zizka, Nov 09 2009
The continued fraction [a(n);a(n),a(n),...] = (1 + sqrt(2))^(2*n-1). - Thomas Ordowski, Jun 07 2013
a((p+1)/2) == 2 (mod p) where p is an odd prime. - Altug Alkan, Mar 17 2016
REFERENCES
A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
LINKS
Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Tanya Khovanova, Recursive Sequences
Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 3.
J. J. O'Connor and E. F. Robertson, Pell's Equation. [Broken link]
Eric Weisstein's World of Mathematics, Pell Equation.
Eric Weisstein's World of Mathematics, NSW Number.
FORMULA
a(n) = (((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) + ((3 + 2*sqrt(2))^(n-1) - 3 - 2*sqrt(2))^(n-1))) / (2*sqrt(2)).
a(n) = 2*A002315(n-1).
Recurrence: a(n) = 6*a(n-1) - a(n-2), starting 2, 14.
Offset 0, with a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = a^((2n+1)/2) - b^((2n+1)/2). a(n) = 2*(A001109(n+1) + A001109(n)) = (A003499(n+1) - A003499(n))/2 = 2*sqrt(A001108(2n+1)) = sqrt(A003499(2n+1)-2). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Limit_{n->oo} a(n)/a(n-1) = 5.82842712474619009760... = 3 + 2*sqrt(2). See A156035.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: 2*x*(1+x)/(1-6*x+x^2).
a(n) = 2*(7*A001109(n) - A001109(n+1)). (End)
a(n) = (1+sqrt(2))^(2*n-1) - (1+sqrt(2))^(1-2*n). - Gerson Washiski Barbosa, Sep 19 2010
a(n) = floor((1 + sqrt(2))^(2*n-1)). - Thomas Ordowski, Jun 07 2013
a(n) = sqrt(2*A075870(n)^2-4). - Derek Orr, Jun 18 2015
a(n) = 2*sqrt((2*A001653(n)^2)-1). - César Aguilera, Jul 13 2023
E.g.f.: 2*(1 + exp(3*x)*(sqrt(2)*sinh(2*sqrt(2)*x) - cosh(2*sqrt(2)*x))). - Stefano Spezia, Aug 27 2024
MATHEMATICA
LinearRecurrence[{6, -1}, {2, 14}, 30] (* Harvey P. Dale, Jul 25 2018 *)
PROG
(PARI) for(n=1, 20, q=(1+sqrt(2))^(2*n-1); print1(contfrac(q)[1], ", ")) \\ Derek Orr, Jun 18 2015
(PARI) Vec(2*x*(1+x)/(1-6*x+x^2) + O(x^100)) \\ Altug Alkan, Mar 17 2016
(Magma) [n: n in [0..10^8] | IsSquare((n^2 + 4) div 2)]; // Vincenzo Librandi, Jun 20 2015
CROSSREFS
(A077445(n))^2 - 2*a(n) = 8.
First differences of A001541.
Pairwise sums of A001542.
Bisection of A002203 and A080039.
Cf. A001653.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 31)^2 = y^2.
+10
16
0, 9, 60, 93, 140, 429, 620, 893, 2576, 3689, 5280, 15089, 21576, 30849, 88020, 125829, 179876, 513093, 733460, 1048469, 2990600, 4274993, 6111000, 17430569, 24916560, 35617593, 101592876, 145224429, 207594620, 592126749, 846430076
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+31, y).
Corresponding values y of solutions (x, y) are in A157646.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (33 + 8*sqrt(2))/31 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1539 + 850*sqrt(2))/31^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) - a(n-6) + 62 for n > 6; a(1)=0, a(2)=9, a(3)=60, a(4)=93, a(5)=140, a(6)=429.
G.f.: x*(9 + 51*x + 33*x^2 - 7*x^3 - 17*x^4 - 7*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 31*A001652(k) for k >= 0.
MATHEMATICA
ClearAll[a]; Evaluate[Array[a, 6]] = {0, 9, 60, 93, 140, 429}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 62; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Dec 27 2011, after given formula *)
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 9, 60, 93, 140, 429, 620}, 50] (* G. C. Greubel, Mar 31 2018 *)
PROG
(PARI) {forstep(n=0, 850000000, [1, 3], if(issquare(2*n^2+62*n+961), print1(n, ", ")))};
(Magma) I:=[0, 9, 60, 93, 140, 429, 620]; [n le 7 select I[n] else Self(n-1) - 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018
CROSSREFS
cf. A157646, A066436 (primes of the form 2*n^2-1), A118673, A129836, A001652, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3 + 2*sqrt(2)), A157647 (decimal expansion of (33 + 8*sqrt(2))/31), A157648 (decimal expansion of (1539 + 850*sqrt(2))/31^2).
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 19 2006
EXTENSIONS
Edited by Klaus Brockhaus, Mar 11 2009
STATUS
approved
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 97)^2 = y^2.
+10
16
0, 15, 228, 291, 368, 1575, 1940, 2387, 9416, 11543, 14148, 55115, 67512, 82695, 321468, 393723, 482216, 1873887, 2295020, 2810795, 10922048, 13376591, 16382748, 63658595, 77964720, 95485887, 371029716, 454411923, 556532768
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x + 97, y).
Corresponding values y of solutions (x, y) are in A157469.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a (prime) number in A066436, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2) = 2m + 1, a(3) = 6m^2 - 10m + 4, a(4) = 3p, a(5) = 6m^2 + 10m + 4, a(6) = 40m^2 - 58m + 21 (cf. A118673).
Pairs (p, m) are (7, 2), (17, 3), (31, 4), (71, 6), (97, 7), (127, 8), (199, 10), (241, 11), (337, 13), (449, 15), (577, 17), (647, 18), (881, 21), (967, 22), ...
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (99 + 14*sqrt(2))/97 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (19491 + 12070*sqrt(2))/97^2 for n mod 3 = 0.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a prime number in A066436, m>=2, Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = 2m^2 + 2m + 1, b(3) = 10m^2 - 14m + 5, b(4) = 5p, b(5) = 10m^2 + 14m + 5, b(6) = 58m^2 - 82m + 29. - Mohamed Bouhamida, Sep 09 2009
FORMULA
a(n) = 6*a(n-3) - a(n-6) + 194 for n > 6; a(1)=0, a(2)=15, a(3)=228, a(4)=291, a(5)=368, a(6)=1575.
G.f.: x*(15 + 213*x + 63*x^2 - 13*x^3 - 71*x^4 - 13*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 97*A001652(k) for k >= 0.
MATHEMATICA
ClearAll[a]; Evaluate[Array[a, 6]] = {0, 15, 228, 291, 368, 1575}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 194; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Dec 27 2011, after given formula *)
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 15, 228, 291, 368, 1575, 1940}, 50] (* G. C. Greubel, May 07 2018 *)
PROG
(PARI) forstep(n=0, 600000000, [3, 1], if(issquare(2*n^2+194*n+9409), print1(n, ", ")))
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(15+213*x+63*x^2-13*x^3-71*x^4-13*x^5)/((1-x)*(1-6*x^3 + x^6)))); // G. C. Greubel, May 07 2018
CROSSREFS
Cf. A157469, A066436 (primes of the form 2*n^2 - 1), A001652, A118673, A118674, A156035 (decimal expansion of 3 + 2*sqrt(2)), A157470 (decimal expansion of (99 + 14*sqrt(2))/97), A157471 (decimal expansion of (19491 + 12070*sqrt(2))/97^2).
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 21 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Mar 12 2009
STATUS
approved

Search completed in 0.078 seconds