[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090550
Decimal expansion of solution to n/x = x - n for n = 5.
18
5, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2, 1, 6, 1, 2, 5, 6, 8, 1, 7, 3, 4, 1, 2, 4
OFFSET
1,1
COMMENTS
n/x = x - n with n = 1 gives the Golden Ratio = 1.6180339887...
Equals n + n/(n + n/(n + n/(n + ....))) for n = 5. See also A090388. - Stanislav Sykora, Jan 23 2014
FORMULA
n/x = x - n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 5: x = (5 + sqrt(45))/2 = 5.85410196624968454...
Equals (5 + 3*sqrt(5))/2 = 1 + 3*phi = sqrt(5)*(phi)^2, where phi is the golden ratio. - G. C. Greubel, Jul 03 2017
Equals 2*phi^3 - phi^2. - Michel Marcus, Apr 20 2020
Minimal polynomial is x^2 - 5x - 5 (this number is an algebraic integer). - Alonso del Arte, Apr 20 2020(n).
Equals lim_{n->oo} A057088(n+1)/A057088(n) = 1 + 3*phi. - Wolfdieter Lang, Nov 16 2023
EXAMPLE
5.85410196624968454...
MATHEMATICA
RealDigits[(5 + 3 Sqrt[5])/2, 10, 120][[1]] (* Harvey P. Dale, Nov 27 2013 *)
PROG
(PARI) (5 + 3*sqrt(5))/2 \\ G. C. Greubel, Jul 03 2017
CROSSREFS
Cf. n + n/(n + n/(n + ...)): A090388 (n = 2), A090458 (n = 3), A090488 (n = 4), A092294 (n = 6), A092290 (n = 7), A090654 (n = 8), A090655 (n = 9), A090656 (n = 10). - Stanislav Sykora, Jan 23 2014
Sequence in context: A300085 A186691 A199057 * A171819 A171541 A306204
KEYWORD
easy,nonn,cons
AUTHOR
Felix Tubiana, Feb 05 2004
STATUS
approved