[go: up one dir, main page]

login
A103999
Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2M x 2N Klein bottle.
8
1, 1, 1, 1, 6, 1, 1, 16, 34, 1, 1, 54, 196, 198, 1, 1, 196, 1666, 2704, 1154, 1, 1, 726, 16384, 64152, 37636, 6726, 1, 1, 2704, 171394, 1844164, 2549186, 524176, 39202, 1, 1, 10086, 1844164, 57523158, 220581904, 101757654, 7300804, 228486, 1
OFFSET
0,5
LINKS
Cliff, Danny and Zoe Stoll, About Klein bottles
W. T. Lu and F. Y. Wu, Dimer statistics on the Moebius strip and the Klein bottle, arXiv:cond-mat/9906154 [cond-mat.stat-mech], 1999.
FORMULA
T(M, N) = Product_{m=1..M} Product_{n=1..N} ( 4sin(Pi*(4n-1)/(4N))^2 + 4sin(Pi*(2m-1)/(2M))^2 ).
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 6, 34, 198, 1154, 6726, 39202, ...
1, 16, 196, 2704, 37636, 524176, 7300804, ...
1, 54, 1666, 64152, 2549186, 101757654, 4064620168, ...
1, 196, 16384, 1844164, 220581904, 26743369156, 3252222705664, ...
1, 726,171394, 57523158, 21050622914, 7902001927776, 2988827208115522, ...
MATHEMATICA
T[m_, n_] := Product[4 Sin[(4k-1) Pi/(4n)]^2 + 4 Cos[j Pi/(2m+1)]^2, {j, 1, m}, {k, 1, n}] // Round;
Table[T[m-n, n], {m, 0, 9}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 20 2018 *)
PROG
(PARI) default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin((4*a-1)*Pi/(4*n))^2+4*sin((2*b-1)*Pi/(2*k))^2)))} \\ Seiichi Manyama, Jan 11 2021
CROSSREFS
Rows include A003499, A067902+2. Columns include A003500+2.
Main diagonal gives A340557.
Sequence in context: A176560 A152602 A119726 * A154985 A157275 A157268
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Feb 26 2005
STATUS
approved