[go: up one dir, main page]

login
A129836
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 97)^2 = y^2.
16
0, 15, 228, 291, 368, 1575, 1940, 2387, 9416, 11543, 14148, 55115, 67512, 82695, 321468, 393723, 482216, 1873887, 2295020, 2810795, 10922048, 13376591, 16382748, 63658595, 77964720, 95485887, 371029716, 454411923, 556532768
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x + 97, y).
Corresponding values y of solutions (x, y) are in A157469.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a (prime) number in A066436, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2) = 2m + 1, a(3) = 6m^2 - 10m + 4, a(4) = 3p, a(5) = 6m^2 + 10m + 4, a(6) = 40m^2 - 58m + 21 (cf. A118673).
Pairs (p, m) are (7, 2), (17, 3), (31, 4), (71, 6), (97, 7), (127, 8), (199, 10), (241, 11), (337, 13), (449, 15), (577, 17), (647, 18), (881, 21), (967, 22), ...
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (99 + 14*sqrt(2))/97 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (19491 + 12070*sqrt(2))/97^2 for n mod 3 = 0.
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a prime number in A066436, m>=2, Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = 2m^2 + 2m + 1, b(3) = 10m^2 - 14m + 5, b(4) = 5p, b(5) = 10m^2 + 14m + 5, b(6) = 58m^2 - 82m + 29. - Mohamed Bouhamida, Sep 09 2009
FORMULA
a(n) = 6*a(n-3) - a(n-6) + 194 for n > 6; a(1)=0, a(2)=15, a(3)=228, a(4)=291, a(5)=368, a(6)=1575.
G.f.: x*(15 + 213*x + 63*x^2 - 13*x^3 - 71*x^4 - 13*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 97*A001652(k) for k >= 0.
MATHEMATICA
ClearAll[a]; Evaluate[Array[a, 6]] = {0, 15, 228, 291, 368, 1575}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 194; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Dec 27 2011, after given formula *)
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 15, 228, 291, 368, 1575, 1940}, 50] (* G. C. Greubel, May 07 2018 *)
PROG
(PARI) forstep(n=0, 600000000, [3, 1], if(issquare(2*n^2+194*n+9409), print1(n, ", ")))
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(15+213*x+63*x^2-13*x^3-71*x^4-13*x^5)/((1-x)*(1-6*x^3 + x^6)))); // G. C. Greubel, May 07 2018
CROSSREFS
Cf. A157469, A066436 (primes of the form 2*n^2 - 1), A001652, A118673, A118674, A156035 (decimal expansion of 3 + 2*sqrt(2)), A157470 (decimal expansion of (99 + 14*sqrt(2))/97), A157471 (decimal expansion of (19491 + 12070*sqrt(2))/97^2).
Sequence in context: A067222 A154597 A041422 * A075262 A286722 A250418
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 21 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Mar 12 2009
STATUS
approved