[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a107788 -id:a107788
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers of the form 2^i * 11^j.
+10
22
1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 121, 128, 176, 242, 256, 352, 484, 512, 704, 968, 1024, 1331, 1408, 1936, 2048, 2662, 2816, 3872, 4096, 5324, 5632, 7744, 8192, 10648, 11264, 14641, 15488, 16384, 21296, 22528, 29282, 30976, 32768
OFFSET
1,2
COMMENTS
A204455(11*a(n)) = 11, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 100 terms from Vincenzo Librandi)
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(22*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (2*11)/((2-1)*(11-1)) = 11/5. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(11)*n)) / sqrt(22). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
fQ[n_] := PowerMod[22, n, n]==0; Select[Range[40000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003596 n = a003596_list !! (n-1)
a003596_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (2 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(Magma) [n: n in [1..2*10^5] | PrimeDivisors(n) subset [2, 11]]; // Vincenzo Librandi, Jun 27 2016
(GAP) Filtered([1..33000], n->PowerMod(22, n, n)=0); # Muniru A Asiru, Mar 19 2019
KEYWORD
nonn,easy
STATUS
approved
Numbers of the form 5^i * 11^j.
+10
22
1, 5, 11, 25, 55, 121, 125, 275, 605, 625, 1331, 1375, 3025, 3125, 6655, 6875, 14641, 15125, 15625, 33275, 34375, 73205, 75625, 78125, 161051, 166375, 171875, 366025, 378125, 390625, 805255, 831875, 859375, 1771561, 1830125, 1890625
OFFSET
1,2
LINKS
FORMULA
An asymptotic formula for a(n) is roughly 1/sqrt(55)*exp(sqrt(2*log(5)*log(11)*n)). - Benoit Cloitre, Mar 08 2002
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(55*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (5*11)/((5-1)*(11-1)) = 11/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(11)*n)) / sqrt(55). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
Take[Union[(5^#[[1]] 11^#[[2]])&/@Tuples[Range[0, 20], {2}]], 50] (* Harvey P. Dale, Dec 26 2010 *)
fQ[n_]:=PowerMod[55, n, n] == 0; Select[Range[2*10^6], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N*=5)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003598 n = a003598_list !! (n-1)
a003598_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (5 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(Magma) [n: n in [1..2*10^6] | PrimeDivisors(n) subset [5, 11]]; // Vincenzo Librandi, Jun 27 2016
(GAP) Filtered([1..2*10^6], n->PowerMod(55, n, n)=0); # Muniru A Asiru, Mar 19 2019
(Sage)
[n for n in (1..2*10^6) if n%55 in {0, 1, 5, 11, 15, 20, 25, 45} and all(x in {5, 11} for x in prime_factors(n))] # F. Chapoton, Mar 16 2020
KEYWORD
nonn,easy
STATUS
approved
Numbers of the form 3^i*11^j.
+10
21
1, 3, 9, 11, 27, 33, 81, 99, 121, 243, 297, 363, 729, 891, 1089, 1331, 2187, 2673, 3267, 3993, 6561, 8019, 9801, 11979, 14641, 19683, 24057, 29403, 35937, 43923, 59049, 72171, 88209, 107811, 131769, 161051, 177147, 216513, 264627, 323433
OFFSET
1,2
LINKS
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(33*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*11)/((3-1)*(11-1)) = 33/20. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(11)*n)) / sqrt(33). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
fQ[n_]:=PowerMod[33, n, n] == 0; Select[Range[4*10^5], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N*=3)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003597 n = a003597_list !! (n-1)
a003597_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (3 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(Magma) [n: n in [1..4*10^5] | PrimeDivisors(n) subset [3, 11]]; // Vincenzo Librandi, Jun 27 2016
(GAP) Filtered([1..324000], n->PowerMod(33, n, n)=0); # Muniru A Asiru, Mar 19 2019
KEYWORD
nonn,easy
STATUS
approved
Numbers of the form 7^i*11^j.
+10
21
1, 7, 11, 49, 77, 121, 343, 539, 847, 1331, 2401, 3773, 5929, 9317, 14641, 16807, 26411, 41503, 65219, 102487, 117649, 161051, 184877, 290521, 456533, 717409, 823543, 1127357, 1294139, 1771561, 2033647, 3195731, 5021863, 5764801
OFFSET
1,2
LINKS
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(77*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (7*11)/((7-1)*(11-1)) = 77/60. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(11)*n)) / sqrt(77). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
Take[Union[7^#[[1]] 11^#[[2]]&/@Tuples[Range[0, 9], 2]], 40] (* Harvey P. Dale, Mar 11 2015 *)
fQ[n_]:=PowerMod[77, n, n] == 0; Select[Range[6 10^6], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N*=7)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003599 n = a003599_list !! (n-1)
a003599_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (7 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(Magma) [n: n in [1..6*10^6] | PrimeDivisors(n) subset [7, 11]]; // Vincenzo Librandi, Jun 27 2016
KEYWORD
nonn,easy
STATUS
approved
Numbers of the form (9^i)*(11^j), with i, j >= 0.
+10
12
1, 9, 11, 81, 99, 121, 729, 891, 1089, 1331, 6561, 8019, 9801, 11979, 14641, 59049, 72171, 88209, 107811, 131769, 161051, 531441, 649539, 793881, 970299, 1185921, 1449459, 1771561, 4782969, 5845851, 7144929, 8732691, 10673289, 13045131
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (9*11)/((9-1)*(11-1)) = 99/80. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(9)*log(11)*n)) / sqrt(99). - Vaclav Kotesovec, Sep 24 2020
MATHEMATICA
f[upto_]:=With[{max9=Floor[Log[9, upto]], max11=Floor[Log[11, upto]]}, Select[Union[Times@@{9^First[#], 11^Last[#]}&/@Tuples[{Range[0, max9], Range[0, max11]}]], #<=upto&]]; f[14000000] (* Harvey P. Dale, Mar 11 2011 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a108687 n = a108687_list !! (n-1)
a108687_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (9 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005
STATUS
approved
Numbers of form 3^i*10^j, with i, j >= 0.
+10
11
1, 3, 9, 10, 27, 30, 81, 90, 100, 243, 270, 300, 729, 810, 900, 1000, 2187, 2430, 2700, 3000, 6561, 7290, 8100, 9000, 10000, 19683, 21870, 24300, 27000, 30000, 59049, 65610, 72900, 81000, 90000, 100000, 177147, 196830, 218700, 243000, 270000
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (3*10)/((3-1)*(10-1)) = 5/3. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(3)*log(10)*n)) / sqrt(30). - Vaclav Kotesovec, Sep 25 2020
MATHEMATICA
n = 10^6; Flatten[Table[3^i*10^j, {i, 0, Log[3, n]}, {j, 0, Log10[n/3^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a025616 n = a025616_list !! (n-1)
a025616_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (3 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
KEYWORD
easy,nonn
STATUS
approved
Numbers of form 7^i*10^j, with i, j >= 0.
+10
11
1, 7, 10, 49, 70, 100, 343, 490, 700, 1000, 2401, 3430, 4900, 7000, 10000, 16807, 24010, 34300, 49000, 70000, 100000, 117649, 168070, 240100, 343000, 490000, 700000, 823543, 1000000, 1176490, 1680700, 2401000, 3430000, 4900000, 5764801, 7000000
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (7*10)/((7-1)*(10-1)) = 35/27. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(7)*log(10)*n)) / sqrt(70). - Vaclav Kotesovec, Sep 25 2020
MATHEMATICA
n = 10^6; Flatten[Table[7^i*10^j, {i, 0, Log[7, n]}, {j, 0, Log10[n/7^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a025632 n = a025632_list !! (n-1)
a025632_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (7 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=7)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
KEYWORD
easy,nonn
STATUS
approved
Numbers of the form (6^i)*(11^j), with i, j >= 0.
+10
10
1, 6, 11, 36, 66, 121, 216, 396, 726, 1296, 1331, 2376, 4356, 7776, 7986, 14256, 14641, 26136, 46656, 47916, 85536, 87846, 156816, 161051, 279936, 287496, 513216, 527076, 940896, 966306, 1679616, 1724976, 1771561, 3079296, 3162456
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (6*11)/((6-1)*(11-1)) = 33/25. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(6)*log(11)*n)) / sqrt(66). - Vaclav Kotesovec, Oct 07 2020
MATHEMATICA
n = 10^6; Flatten[Table[6^i*11^j, {i, 0, Log[6, n]}, {j, 0, Log[11, n/6^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a108698 n = a108698_list !! (n-1)
a108698_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (6 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 19 2005
STATUS
approved
Numbers of form 9^i*10^j, with i, j >= 0.
+10
9
1, 9, 10, 81, 90, 100, 729, 810, 900, 1000, 6561, 7290, 8100, 9000, 10000, 59049, 65610, 72900, 81000, 90000, 100000, 531441, 590490, 656100, 729000, 810000, 900000, 1000000, 4782969, 5314410, 5904900, 6561000, 7290000, 8100000, 9000000
OFFSET
1,2
LINKS
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a025635 n = a025635_list !! (n-1)
a025635_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (9 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=9)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
KEYWORD
easy,nonn
STATUS
approved
Numbers of the form (10^i)*(11^j), with i, j >= 0.
+10
9
1, 10, 11, 100, 110, 121, 1000, 1100, 1210, 1331, 10000, 11000, 12100, 13310, 14641, 100000, 110000, 121000, 133100, 146410, 161051, 1000000, 1100000, 1210000, 1331000, 1464100, 1610510, 1771561, 10000000, 11000000, 12100000, 13310000
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (10*11)/((10-1)*(11-1)) = 11/9. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(10)*log(11)*n)) / sqrt(110). - Vaclav Kotesovec, Sep 25 2020
MATHEMATICA
n = 10^7; Flatten[Table[10^i*11^j, {i, 0, Log10[n]}, {j, 0, Log[11, n/10^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a108779 n = a108779_list !! (n-1)
a108779_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (10 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 26 2005
STATUS
approved

Search completed in 0.011 seconds