[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 2^i * 11^j.
22

%I #51 Nov 03 2023 10:31:38

%S 1,2,4,8,11,16,22,32,44,64,88,121,128,176,242,256,352,484,512,704,968,

%T 1024,1331,1408,1936,2048,2662,2816,3872,4096,5324,5632,7744,8192,

%U 10648,11264,14641,15488,16384,21296,22528,29282,30976,32768

%N Numbers of the form 2^i * 11^j.

%C A204455(11*a(n)) = 11, and only for these numbers. - _Wolfdieter Lang_, Feb 04 2012

%H Charles R Greathouse IV, <a href="/A003596/b003596.txt">Table of n, a(n) for n = 1..10000</a> (first 100 terms from Vincenzo Librandi)

%F The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(22*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - _Peter Bala_, Mar 18 2019

%F Sum_{n>=1} 1/a(n) = (2*11)/((2-1)*(11-1)) = 11/5. - _Amiram Eldar_, Sep 23 2020

%F a(n) ~ exp(sqrt(2*log(2)*log(11)*n)) / sqrt(22). - _Vaclav Kotesovec_, Sep 23 2020

%t fQ[n_] := PowerMod[22,n,n]==0; Select[Range[40000], fQ] (* _Vincenzo Librandi_, Feb 04 2012 *)

%o (PARI) list(lim)=my(v=List(),N);for(n=0,log(lim)\log(11),N=11^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jun 28 2011

%o (Haskell)

%o import Data.Set (singleton, deleteFindMin, insert)

%o a003596 n = a003596_list !! (n-1)

%o a003596_list = f $ singleton (1,0,0) where

%o f s = y : f (insert (2 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')

%o where ((y, i, j), s') = deleteFindMin s

%o -- _Reinhard Zumkeller_, May 15 2015

%o (Magma) [n: n in [1..2*10^5] | PrimeDivisors(n) subset [2, 11]]; // _Vincenzo Librandi_, Jun 27 2016

%o (GAP) Filtered([1..33000],n->PowerMod(22,n,n)=0); # _Muniru A Asiru_, Mar 19 2019

%Y Cf. A025612, A025616, A025621, A025625, A025629, A025632, A025634, A025635, A108761, A003597, A107988, A003598, A108698, A003599, A107788, A108687, A108779, A108090.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_