Displaying 1-10 of 21 results found.
Numbers of the form 2^i * 11^j.
+10
22
1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 121, 128, 176, 242, 256, 352, 484, 512, 704, 968, 1024, 1331, 1408, 1936, 2048, 2662, 2816, 3872, 4096, 5324, 5632, 7744, 8192, 10648, 11264, 14641, 15488, 16384, 21296, 22528, 29282, 30976, 32768
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(22*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (2*11)/((2-1)*(11-1)) = 11/5. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(11)*n)) / sqrt(22). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
fQ[n_] := PowerMod[22, n, n]==0; Select[Range[40000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003596 n = a003596_list !! (n-1)
a003596_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (2 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
(Magma) [n: n in [1..2*10^5] | PrimeDivisors(n) subset [2, 11]]; // Vincenzo Librandi, Jun 27 2016
(GAP) Filtered([1..33000], n->PowerMod(22, n, n)=0); # Muniru A Asiru, Mar 19 2019
CROSSREFS
Cf. A025612, A025616, A025621, A025625, A025629, A025632, A025634, A025635, A108761, A003597, A107988, A003598, A108698, A003599, A107788, A108687, A108779, A108090.
Numbers of the form 3^i*11^j.
+10
21
1, 3, 9, 11, 27, 33, 81, 99, 121, 243, 297, 363, 729, 891, 1089, 1331, 2187, 2673, 3267, 3993, 6561, 8019, 9801, 11979, 14641, 19683, 24057, 29403, 35937, 43923, 59049, 72171, 88209, 107811, 131769, 161051, 177147, 216513, 264627, 323433
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(33*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*11)/((3-1)*(11-1)) = 33/20. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(11)*n)) / sqrt(33). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
fQ[n_]:=PowerMod[33, n, n] == 0; Select[Range[4*10^5], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N*=3)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003597 n = a003597_list !! (n-1)
a003597_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (3 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
(Magma) [n: n in [1..4*10^5] | PrimeDivisors(n) subset [3, 11]]; // Vincenzo Librandi, Jun 27 2016
(GAP) Filtered([1..324000], n->PowerMod(33, n, n)=0); # Muniru A Asiru, Mar 19 2019
CROSSREFS
Cf. A025612, A025616, A025621, A025625, A025629, A025632, A025634, A025635, A108761, A003596, A107988, A003598, A108698, A003599, A107788, A108687, A108779, A108090.
Numbers of the form 7^i*11^j.
+10
21
1, 7, 11, 49, 77, 121, 343, 539, 847, 1331, 2401, 3773, 5929, 9317, 14641, 16807, 26411, 41503, 65219, 102487, 117649, 161051, 184877, 290521, 456533, 717409, 823543, 1127357, 1294139, 1771561, 2033647, 3195731, 5021863, 5764801
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(77*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (7*11)/((7-1)*(11-1)) = 77/60. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(11)*n)) / sqrt(77). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
Take[Union[7^#[[1]] 11^#[[2]]&/@Tuples[Range[0, 9], 2]], 40] (* Harvey P. Dale, Mar 11 2015 *)
fQ[n_]:=PowerMod[77, n, n] == 0; Select[Range[6 10^6], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N*=7)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003599 n = a003599_list !! (n-1)
a003599_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (7 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
(Magma) [n: n in [1..6*10^6] | PrimeDivisors(n) subset [7, 11]]; // Vincenzo Librandi, Jun 27 2016
CROSSREFS
Cf. A025612, A025616, A025621, A025625, A025629, A025632, A025634, A025635, A108761, A003596, A003597, A107988, A003598, A108698, A107788, A108687, A108779, A108090.
Numbers of the form (11^i)*(13^j).
+10
20
1, 11, 13, 121, 143, 169, 1331, 1573, 1859, 2197, 14641, 17303, 20449, 24167, 28561, 161051, 190333, 224939, 265837, 314171, 371293, 1771561, 2093663, 2474329, 2924207, 3455881, 4084223, 4826809, 19487171, 23030293, 27217619
FORMULA
Sum_{n>=1} 1/a(n) = (11*13)/((11-1)*(13-1)) = 143/120. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(11)*log(13)*n)) / sqrt(143). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
mx = 3*10^7; Sort@ Flatten@ Table[ 11^i*13^j, {i, 0, Log[11, mx]}, {j, 0, Log[13, mx/11^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
fQ[n_]:=PowerMod[143, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a108090 n = a108090_list !! (n-1)
a108090_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (11 * y, i + 1, j) $ insert (13 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
(Magma) [n: n in [1..10^7] | PrimeDivisors(n) subset [11, 13]]; // Vincenzo Librandi, Jun 27 2016
(PARI) list(lim)=my(v=List(), t); for(j=0, logint(lim\=1, 13), t=13^j; while(t<=lim, listput(v, t); t*=11)); Set(v) \\ Charles R Greathouse IV, Aug 29 2016
CROSSREFS
Cf. A003586, A003592, A003593, A003591, A003594, A003595, A003596, A003597, A003598, A003599, A107326, A107364, A107466, A108056.
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 03 2005
Numbers of the form (2^i)*(13^j).
+10
13
1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 128, 169, 208, 256, 338, 416, 512, 676, 832, 1024, 1352, 1664, 2048, 2197, 2704, 3328, 4096, 4394, 5408, 6656, 8192, 8788, 10816, 13312, 16384, 17576, 21632, 26624, 28561, 32768, 35152, 43264, 53248, 57122
FORMULA
Sum_{n>=1} 1/a(n) = (2*13)/((2-1)*(13-1)) = 13/6. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(13)*n)) / sqrt(26). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
fQ[n_] := PowerMod[26, n, n]==0; Select[Range[60000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
mx = 60000; Sort@ Flatten@ Table[2^i*13^j, {i, 0, Log[2, mx]}, {j, 0, Log[13, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(13), N=13^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), May 21 2005
Numbers of the form (4^i)*(11^j), with i, j >= 0.
+10
13
1, 4, 11, 16, 44, 64, 121, 176, 256, 484, 704, 1024, 1331, 1936, 2816, 4096, 5324, 7744, 11264, 14641, 16384, 21296, 30976, 45056, 58564, 65536, 85184, 123904, 161051, 180224, 234256, 262144, 340736, 495616, 644204, 720896, 937024, 1048576
FORMULA
Sum_{n>=1} 1/a(n) = (4*11)/((4-1)*(11-1)) = 22/15. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(4)*log(11)*n)) / sqrt(44). - Vaclav Kotesovec, Sep 24 2020
MATHEMATICA
n = 10^6; Flatten[Table[4^i*11^j, {i, 0, Log[4, n]}, {j, 0, Log[11, n/4^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a107988 n = a107988_list !! (n-1)
a107988_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (4 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 12 2005
Numbers of the form (3^i)*(13^j).
+10
12
1, 3, 9, 13, 27, 39, 81, 117, 169, 243, 351, 507, 729, 1053, 1521, 2187, 2197, 3159, 4563, 6561, 6591, 9477, 13689, 19683, 19773, 28431, 28561, 41067, 59049, 59319, 85293, 85683, 123201, 177147, 177957, 255879, 257049, 369603, 371293, 531441
FORMULA
Sum_{n>=1} 1/a(n) = (3*13)/((3-1)*(13-1)) = 13/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(13)*n)) / sqrt(39). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
mx = 540000; Sort@ Flatten@ Table[3^i*13^j, {i, 0, Log[3, mx]}, {j, 0, Log[13, mx/3^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
fQ[n_]:=PowerMod[39, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(13), N=13^n; while(N<=lim, listput(v, N); N*=3)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Magma) [n: n in [1..10^7] | PrimeDivisors(n) subset [3, 13]]; // Vincenzo Librandi, Jun 27 2016
CROSSREFS
Cf. A003586, A003592, A003593, A003591, A003594, A003595, A003596, A003597, A003598, A003599, A107326.
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), May 23 2005
Numbers of the form (8^i)*(11^j), with i, j >= 0.
+10
12
1, 8, 11, 64, 88, 121, 512, 704, 968, 1331, 4096, 5632, 7744, 10648, 14641, 32768, 45056, 61952, 85184, 117128, 161051, 262144, 360448, 495616, 681472, 937024, 1288408, 1771561, 2097152, 2883584, 3964928, 5451776, 7496192, 10307264
FORMULA
Sum_{n>=1} 1/a(n) = (8*11)/((8-1)*(11-1)) = 44/35. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(8)*log(11)*n)) / sqrt(88). - Vaclav Kotesovec, Oct 07 2020
MATHEMATICA
Take[Union[8^First[#]*11^Last[#]&/@Tuples[Range[0, 20], 2]], 40] (* Harvey P. Dale, Jan 17 2015 *)
n = 10^6; Flatten[Table[8^i*11^j, {i, 0, Log[8, n]}, {j, 0, Log[11, n/8^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a107788 n = a107788_list !! (n-1)
a107788_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (8 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 14 2005
Numbers of the form (9^i)*(11^j), with i, j >= 0.
+10
12
1, 9, 11, 81, 99, 121, 729, 891, 1089, 1331, 6561, 8019, 9801, 11979, 14641, 59049, 72171, 88209, 107811, 131769, 161051, 531441, 649539, 793881, 970299, 1185921, 1449459, 1771561, 4782969, 5845851, 7144929, 8732691, 10673289, 13045131
FORMULA
Sum_{n>=1} 1/a(n) = (9*11)/((9-1)*(11-1)) = 99/80. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(9)*log(11)*n)) / sqrt(99). - Vaclav Kotesovec, Sep 24 2020
MATHEMATICA
f[upto_]:=With[{max9=Floor[Log[9, upto]], max11=Floor[Log[11, upto]]}, Select[Union[Times@@{9^First[#], 11^Last[#]}&/@Tuples[{Range[0, max9], Range[0, max11]}]], #<=upto&]]; f[14000000] (* Harvey P. Dale, Mar 11 2011 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a108687 n = a108687_list !! (n-1)
a108687_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (9 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 17 2005
Numbers of form 3^i*10^j, with i, j >= 0.
+10
11
1, 3, 9, 10, 27, 30, 81, 90, 100, 243, 270, 300, 729, 810, 900, 1000, 2187, 2430, 2700, 3000, 6561, 7290, 8100, 9000, 10000, 19683, 21870, 24300, 27000, 30000, 59049, 65610, 72900, 81000, 90000, 100000, 177147, 196830, 218700, 243000, 270000
FORMULA
Sum_{n>=1} 1/a(n) = (3*10)/((3-1)*(10-1)) = 5/3. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(3)*log(10)*n)) / sqrt(30). - Vaclav Kotesovec, Sep 25 2020
MATHEMATICA
n = 10^6; Flatten[Table[3^i*10^j, {i, 0, Log[3, n]}, {j, 0, Log10[n/3^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a025616 n = a025616_list !! (n-1)
a025616_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (3 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
(PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
CROSSREFS
Cf. A025612, A025621, A025625, A025629, A025632, A025634, A025635, A108761, A003596, A003597, A107988, A003598, A108698, A003599, A107788, A108687, A108779, A108090.
Search completed in 0.023 seconds
|