[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of form 7^i*10^j, with i, j >= 0.
11

%I #17 Sep 25 2020 05:10:39

%S 1,7,10,49,70,100,343,490,700,1000,2401,3430,4900,7000,10000,16807,

%T 24010,34300,49000,70000,100000,117649,168070,240100,343000,490000,

%U 700000,823543,1000000,1176490,1680700,2401000,3430000,4900000,5764801,7000000

%N Numbers of form 7^i*10^j, with i, j >= 0.

%H Reinhard Zumkeller, <a href="/A025632/b025632.txt">Table of n, a(n) for n = 1..10000</a>

%F Sum_{n>=1} 1/a(n) = (7*10)/((7-1)*(10-1)) = 35/27. - _Amiram Eldar_, Sep 25 2020

%F a(n) ~ exp(sqrt(2*log(7)*log(10)*n)) / sqrt(70). - _Vaclav Kotesovec_, Sep 25 2020

%t n = 10^6; Flatten[Table[7^i*10^j, {i, 0, Log[7, n]}, {j, 0, Log10[n/7^i]}]] // Sort (* _Amiram Eldar_, Sep 25 2020 *)

%o (Haskell)

%o import Data.Set (singleton, deleteFindMin, insert)

%o a025632 n = a025632_list !! (n-1)

%o a025632_list = f $ singleton (1,0,0) where

%o f s = y : f (insert (7 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')

%o where ((y, i, j), s') = deleteFindMin s

%o -- _Reinhard Zumkeller_, May 15 2015

%o (PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=7)); Set(v) \\ _Charles R Greathouse IV_, Jan 10 2018

%Y Cf. A025612, A025616, A025621, A025625, A025629, A025634, A025635, A108761, A003596, A003597, A107988, A003598, A108698, A003599, A107788, A108687, A108779, A108090.

%K easy,nonn

%O 1,2

%A _David W. Wilson_