[go: up one dir, main page]

login
Search: a025147 -id:a025147
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n that do not contain 1 as a part.
(Formerly M0309 N0113)
+10
375
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701
OFFSET
0,5
COMMENTS
Also the number of partitions of n-1, n >= 2, such that the least part occurs exactly once. See A096373, A097091, A097092, A097093. - Robert G. Wilson v, Jul 24 2004 [Corrected by Wolfdieter Lang, Feb 18 2009]
Number of partitions of n+1 where the number of parts is itself a part. Take a partition of n (with k parts) which does not contain 1, remove 1 from each part and add a new part of size k+1. - Franklin T. Adams-Watters, May 01 2006
Number of partitions where the largest part occurs at least twice. - Joerg Arndt, Apr 17 2011
Row sums of triangle A147768. - Gary W. Adamson, Nov 11 2008
From Lewis Mammel (l_mammel(AT)att.net), Oct 06 2009: (Start)
a(n) is the number of sets of n disjoint pairs of 2n things, called a pairing, disjoint with a given pairing (A053871), that are unique under permutations preserving the given pairing.
Can be seen immediately from a graphical representation which must decompose into even numbered cycles of 4 or more things, as connected by pairs alternating between the pairings. Each thing is in a single cycle, so this is a partition of 2n into even parts greater than 2, equivalent to a partition of n into parts greater than 1. (End)
Convolution product (1, 1, 2, 2, 4, 4, ...) * (1, 2, 3, ...) = A058682 starting (1, 3, 7, 13, 23, 37, ...); with row sums of triangle A171239 = A058682. - Gary W. Adamson, Dec 05 2009
Also the number of 2-regular multigraphs with loops forbidden. - Jason Kimberley, Jan 05 2011
Number of appearances of the multiplicity n, n-1, ..., n-k in all partitions of n, for k < n/2. (Only populated by multiplicities of large numbers of 1's.) - William Keith, Nov 20 2011
Also the number of equivalence classes of n X n binary matrices with exactly 2 1's in each row and column, up to permutations of rows and columns (cf. A133687). - N. J. A. Sloane, Sep 16 2013
The q-Catalan numbers ((1-q)/(1-q^(n+1)))[2n,n]_q, where [2n,n]_q are the central q-binomial coefficients, match this sequence in their initial segment of length n. - William J. Keith, Nov 14 2013
Starting at a(2) this sequence gives the number of vertices on a nim tree created in the game of edge removal for a path P_{n} where n is the number of vertices on the path. This is the number of nonisomorphic graphs that can result from the path when the game of edge removal is played. - Lyndsey Wong, Jul 09 2016
The number of different ways to climb a staircase taking at least two stairs at a time. - Mohammad K. Azarian, Nov 20 2016
Let 1,0,1,1,1,... (offset 0) count unlabeled, connected, loopless 1-regular digraphs. This here is the Euler transform of that sequence, counting unlabeled loopless 1-regular digraphs. A145574 is the associated multiset transformation. A000166 are the labeled loopless 1-regular digraphs. - R. J. Mathar, Mar 25 2019
For n > 1, also the number of partitions with no part greater than the number of ones. - George Beck, May 09 2019 [See A187219 which is the correct sequence for this interpretation for n >= 1. - Spencer Miller, Jan 30 2023]
From Gus Wiseman, May 19 2019: (Start)
Conjecture: Also the number of integer partitions of n - 1 that have a consecutive subsequence summing to each positive integer from 1 to n - 1. For example, (32211) is such a partition because we have consecutive subsequences:
1: (1)
2: (2)
3: (3) or (21)
4: (22) or (211)
5: (32) or (221)
6: (2211)
7: (322)
8: (3221)
9: (32211)
(End)
There is a sufficient and necessary condition to characterize the partitions defined by Gus Wiseman. It is that the largest part must be less than or equal to the number of ones plus one. Hence, the number of partitions of n with no part greater than the number of ones is the same as the number of partitions of n-1 that have a consecutive subsequence summing to each integer from 1 to n-1. Gus Wiseman's conjecture can be proved bijectively. - Andrew Yezhou Wang, Dec 14 2019
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 836.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, p*(n).
H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P. G. Tait, Scientific Papers, Cambridge Univ. Press, Vol. 1, 1898, Vol. 2, 1900, see Vol. 1, p. 334.
LINKS
Andrew van den Hoeven, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
A. P. Akande et al., Computational study of non-unitary partitions, arXiv:2112.03264 [math.CO], 2021.
Colin Albert, Olivia Beckwith, Irfan Demetoglu, Robert Dicks, John H. Smith, and Jasmine Wang, Integer partitions with large Dyson rank, arXiv:2203.08987 [math.NT], 2022.
Max A. Alekseyev and Allan Bickle, Forbidden Subgraphs of Single Graphs, (2024). See p. 6.
Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
G. Dahl and T. A. Haufmann, Zero-one completely positive matrices and the A(R,S) classes, Preprint, 2016.
R. P. Gallant, G. Gunther, B. L. Hartnell, and D. F. Rall, A game of edge removal on graphs, JCMCC, 57 (2006), 75 - 82.
Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin. 117 (2014), 183-190. MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.
R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
Wenwei Li, On the Number of Conjugate Classes of Derangements, arXiv:1612.08186 [math.CO], 2016.
J. L. Nicolas and A. Sárközy, On partitions without small parts, Journal de théorie des nombres de Bordeaux, 12 no. 1 (2000), p. 227-254.
R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
Noah Rubin, Curtis Bright, Kevin K. H. Cheung, and Brett Stevens, Integer and Constraint Programming Revisited for Mutually Orthogonal Latin Squares, arXiv:2103.11018 [cs.DM], 2021.
Miloslav Znojil, Quantum phase transitions mediated by clustered non-Hermitian degeneracies, arXiv:2102.12272 [quant-ph], 2021.
FORMULA
G.f.: Product_{m>1} 1/(1-x^m).
a(0)=1, a(n) = p(n) - p(n-1), n >= 1, with the partition numbers p(n) := A000041(n).
a(n) = A085811(n+3). - James A. Sellers, Dec 06 2005 [Corrected by Gionata Neri, Jun 14 2015]
a(n) = A116449(n) + A116450(n). - Reinhard Zumkeller, Feb 16 2006
a(n) = Sum_{k=2..floor((n+2)/2)} A008284(n-k+1,k-1) for n > 0. - Reinhard Zumkeller, Nov 04 2007
G.f.: 1 + Sum_{n>=2} x^n / Product_{k>=n} (1 - x^k). - Joerg Arndt, Apr 13 2011
G.f.: Sum_{n>=0} x^(2*n) / Product_{k=1..n} (1 - x^k). - Joerg Arndt, Apr 17 2011
a(n) = A090824(n,1) for n > 0. - Reinhard Zumkeller, Oct 10 2012
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n) + (217*Pi^2/6912 + 9/(2*Pi^2) + 13/8)/n). - Vaclav Kotesovec, Feb 26 2015, extended Nov 04 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(0) = 1, a(n) = A232697(n) - 1. - George Beck, May 09 2019
From Peter Bala, Feb 19 2021: (Start)
G.f.: A(q) = Sum_{n >= 0} q^(n^2)/( (1 - q)*Product_{k = 2..n} (1 - q^k)^2 ).
More generally, A(q) = Sum_{n >= 0} q^(n*(n+r))/( (1 - q) * Product_{k = 2..n} (1 - q^k)^2 * Product_{i = 1..r} (1 - q^(n+i)) ) for r = 0,1,2,.... (End)
EXAMPLE
a(6) = 4 from 6 = 4+2 = 3+3 = 2+2+2.
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 7*x^8 + 8*x^9 + ...
From Gus Wiseman, May 19 2019: (Start)
The a(2) = 1 through a(9) = 8 partitions not containing 1 are the following. The Heinz numbers of these partitions are given by A005408.
(2) (3) (4) (5) (6) (7) (8) (9)
(22) (32) (33) (43) (44) (54)
(42) (52) (53) (63)
(222) (322) (62) (72)
(332) (333)
(422) (432)
(2222) (522)
(3222)
The a(2) = 1 through a(9) = 8 partitions of n - 1 whose least part appears exactly once are the following. The Heinz numbers of these partitions are given by A247180.
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (31) (32) (42) (43) (53)
(41) (51) (52) (62)
(221) (321) (61) (71)
(331) (332)
(421) (431)
(2221) (521)
(3221)
The a(2) = 1 through a(9) = 8 partitions of n + 1 where the number of parts is itself a part are the following. The Heinz numbers of these partitions are given by A325761.
(21) (22) (32) (42) (52) (62) (72) (82)
(311) (321) (322) (332) (333) (433)
(331) (431) (432) (532)
(4111) (4211) (531) (631)
(4221) (4222)
(4311) (4321)
(51111) (4411)
(52111)
The a(2) = 1 through a(8) = 7 partitions of n whose greatest part appears at least twice are the following. The Heinz numbers of these partitions are given by A070003.
(11) (111) (22) (221) (33) (331) (44)
(1111) (11111) (222) (2221) (332)
(2211) (22111) (2222)
(111111) (1111111) (3311)
(22211)
(221111)
(11111111)
Nonisomorphic representatives of the a(2) = 1 through a(6) = 4 2-regular multigraphs with n edges and n vertices are the following.
{12,12} {12,13,23} {12,12,34,34} {12,12,34,35,45} {12,12,34,34,56,56}
{12,13,24,34} {12,13,24,35,45} {12,12,34,35,46,56}
{12,13,23,45,46,56}
{12,13,24,35,46,56}
The a(2) = 1 through a(9) = 8 partitions of n with no part greater than the number of ones are the following. The Heinz numbers of these partitions are given by A325762.
(11) (111) (211) (2111) (2211) (22111) (22211) (33111)
(1111) (11111) (3111) (31111) (32111) (222111)
(21111) (211111) (41111) (321111)
(111111) (1111111) (221111) (411111)
(311111) (2211111)
(2111111) (3111111)
(11111111) (21111111)
(111111111)
(End)
MAPLE
with(combstruct): ZL1:=[S, {S=Set(Cycle(Z, card>1))}, unlabeled]: seq(count(ZL1, size=n), n=0..50); # Zerinvary Lajos, Sep 24 2007
G:= {P=Set (Set (Atom, card>1))}: combstruct[gfsolve](G, unlabeled, x): seq (combstruct[count] ([P, G, unlabeled], size=i), i=0..50); # Zerinvary Lajos, Dec 16 2007
with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, unlabeled]; end: A:=a(2):seq(count(A, size=n), n=0..50); # Zerinvary Lajos, Jun 11 2008
# alternative Maple program:
A002865:= proc(n) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)-1)*A002865(n-j), j=1..n)/n)
end:
seq(A002865(n), n=0..60); # Alois P. Heinz, Sep 17 2017
MATHEMATICA
Table[ PartitionsP[n + 1] - PartitionsP[n], {n, -1, 50}] (* Robert G. Wilson v, Jul 24 2004 *)
f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 2], {n, 50}] (* Robert G. Wilson v *)
Table[SeriesCoefficient[Exp[Sum[x^(2*k)/(k*(1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Aug 18 2018 *)
CoefficientList[Series[1/QPochhammer[x^2, x], {x, 0, 50}], x] (* G. C. Greubel, Nov 03 2019 *)
Table[Count[IntegerPartitions[n], _?(FreeQ[#, 1]&)], {n, 0, 50}] (* Harvey P. Dale, Feb 12 2023 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 - x) / eta(x + x * O(x^n)), n))};
(PARI) a(n)=if(n, numbpart(n)-numbpart(n-1), 1) \\ Charles R Greathouse IV, Nov 26 2012
(Magma) A41 := func<n|n ge 0 select NumberOfPartitions(n) else 0>; [A41(n)-A41(n-1):n in [0..50]]; // Jason Kimberley, Jan 05 2011
(GAP) Concatenation([1], List([1..41], n->NrPartitions(n)-NrPartitions(n-1))); # Muniru A Asiru, Aug 20 2018
(SageMath)
def A002865_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+2)) for m in (0..60)) ).list()
A002865_list(50) # G. C. Greubel, Nov 03 2019
(Python)
from sympy import npartitions
def A002865(n): return npartitions(n)-npartitions(n-1) if n else 1 # Chai Wah Wu, Mar 30 2023
CROSSREFS
First differences of partition numbers A000041. Cf. A053445, A072380, A081094, A081095, A232697.
Pairwise sums seem to be in A027336.
Essentially the same as A085811.
A column of A090824 and of A133687 and of A292508 and of A292622. Cf. A229161.
2-regular not necessarily connected graphs: A008483 (simple graphs), A000041 (multigraphs with loops allowed), this sequence (multigraphs with loops forbidden), A027336 (graphs with loops allowed but no multiple edges). - Jason Kimberley, Jan 05 2011
See also A098743 (parts that do not divide n).
Numbers n such that in the edge-delete game on the path P_{n} the first player does not have a winning strategy: A274161. - Lyndsey Wong, Jul 09 2016
Row suns of characteristic array A145573.
KEYWORD
nonn,easy,nice
STATUS
approved
Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.
+10
45
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
OFFSET
2,5
COMMENTS
Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.
LINKS
P. Erdős, J. L. Nicolas and A. Sárközy, On the number of partitions of n without a given subsum (I), Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
EXAMPLE
Triangle begins:
1
1 1
1 2 1
2 2 2 2
2 2 3 2 2
3 3 3 3 3 3
3 4 3 5 3 4 3
5 5 4 5 5 4 5 5
5 6 5 6 7 6 5 6 5
7 7 7 7 7 7 7 7 7 7
8 9 8 8 8 11 8 8 8 9 8
Row n = 8 counts the following strict partitions:
(8) (8) (8) (8) (8) (8) (8)
(6,2) (7,1) (7,1) (7,1) (7,1) (7,1) (6,2)
(5,3) (5,3) (6,2) (6,2) (6,2) (5,3) (5,3)
(4,3,1) (5,3) (4,3,1)
(5,2,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], k]&]], {n, 2, 15}, {k, 1, n-1}]
CROSSREFS
Columns k = 0 and k = n are A025147.
The non-strict version is A046663, central column A006827.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
The complement is A365661, non-strict A365543, central column A237258.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364272 counts sum-full strict partitions, sum-free A364349.
A364350 counts combination-free strict partitions, complement A364839.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 17 2023
STATUS
approved
Number of partitions of n into odd parts greater than 1.
+10
34
1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
OFFSET
0,10
COMMENTS
Also number of partitions of n into distinct parts which are not powers of 2.
Also number of partitions of n into distinct parts such that the two largest parts differ by 1.
Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - Emeric Deutsch, Mar 30 2006
Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007
In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - Joerg Arndt, Jun 11 2013
Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - Clark Kimberling, Mar 05 2014
From Gus Wiseman, Aug 22 2021: (Start)
Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are:
32 222 322 332 432 3322 3332 4332 4432 5432 43332
2222 3222 22222 4322 33222 33322 33332 44322
32222 222222 43222 43322 333222
322222 332222 432222
2222222 3222222
(End)
REFERENCES
J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..10000 (n = 0..1000 from Alois P. Heinz)
C. Ballantine and M. Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1; doi.
Howard D. Grossman, Problem 228, Mathematics Magazine, 28 (1955), p. 160.
R. K. Guy, Two theorems on partitions, Math. Gaz., 42 (1958), 84-86. Math. Rev. 20 #3110.
James Mc Laughlin, Andrew V. Sills, and Peter Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023
EXAMPLE
1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From Joerg Arndt, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01: [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03: [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04: [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05: [ 1 1 1 2 5 5 5 2 1 1 1 ]
06: [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07: [ 1 1 3 5 5 5 3 1 1 ]
08: [ 1 1 7 7 7 1 1 ]
09: [ 1 2 2 5 5 5 2 2 1 ]
10: [ 1 4 5 5 5 4 1 ]
11: [ 2 2 2 2 3 3 3 2 2 2 2 ]
12: [ 2 3 5 5 5 3 2 ]
13: [ 2 7 7 7 2 ]
(End)
From Gus Wiseman, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
7 53 9 55 B 75 D 77 F 97 H 99 J
333 73 533 93 553 95 555 B5 755 B7 775
3333 733 B3 753 D3 773 D5 955
5333 933 5533 953 F3 973
33333 7333 B33 5553 B53
53333 7533 D33
9333 55333
333333 73333
(End)
MAPLE
To get 128 terms: t4 := mul((1+x^(2^n)), n=0..7); t5 := mul((1+x^k), k=1..128): t6 := series(t5/t4, x, 100); t7 := seriestolist(t6);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> b(n, n-1+irem(n, 2)):
seq(a(n), n=0..80); # Alois P. Heinz, Jun 11 2013
MATHEMATICA
max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
Table[Length[Select[IntegerPartitions[n], FreeQ[#, 1]&&OddQ[Times@@#]&]], {n, 0, 30}] (* Gus Wiseman, Feb 16 2021 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
(Haskell)
a087897 = p [3, 5..] where
p [] _ = 0
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 12 2011
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A087897_T(n, k):
if n==0: return 1
if k<3 or n<0: return 0
return A087897_T(n, k-2)+A087897_T(n-k, k)
def A087897(n): return A087897_T(n, n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz
CROSSREFS
The ordered version is A000931.
Partitions with no ones are counted by A002865, ranked by A005408.
The even version is A035363, ranked by A066207.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A000009 counts partitions into odd parts, ranked by A066208.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by A340932.
A027187 counts partitions with even length/maximum, ranks A028260/A244990.
A027193 counts partitions with odd length/maximum, ranks A026424/A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A058696 counts partitions of even numbers, ranked by A300061.
A340385 counts partitions with odd length and maximum, ranked by A340386.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2003
STATUS
approved
Number of partitions of n into 3 mutually coprime parts.
+10
33
0, 0, 0, 1, 1, 1, 2, 1, 3, 2, 4, 2, 7, 2, 8, 4, 8, 4, 15, 4, 16, 7, 15, 7, 26, 7, 23, 11, 26, 10, 43, 9, 35, 16, 38, 16, 54, 14, 49, 23, 54, 18, 79, 18, 66, 31, 64, 25, 100, 25, 89, 36, 85, 31, 127, 35, 104, 46, 104, 39, 167, 36, 125, 58, 129, 52, 185, 45
OFFSET
0,7
COMMENTS
The Heinz numbers of these partitions are the intersection of A014612 (triples) and A302696 (pairwise coprime). - Gus Wiseman, Oct 16 2020
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Robert Israel)
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} [gcd(i,j) * gcd(j,n-i-j) * gcd(i,n-i-j) = 1], where [] is the Iverson bracket.
a(n > 2) = A220377(n) + 1. - Gus Wiseman, Oct 15 2020
EXAMPLE
There are 2 partitions of 9 into 3 mutually coprime parts: 7+1+1 = 5+3+1, so a(9) = 2.
There are 4 partitions of 10 into 3 mutually coprime parts: 8+1+1 = 7+2+1 = 5+4+1 = 5+3+2, so a(10) = 4.
There are 2 partitions of 11 into 3 mutually coprime parts: 9+1+1 = 7+3+1, so a(11) = 2.
There are 7 partitions of 12 into 3 mutually coprime parts: 10+1+1 = 9+2+1 = 8+3+1 = 7+4+1 = 6+5+1 = 7+3+2 = 5+4+3, so a(12) = 7.
MAPLE
N:= 200: # to get a(0)..a(N)
A:= Array(0..N):
for a from 1 to N/3 do
for b from a to (N-a)/2 do
if igcd(a, b) > 1 then next fi;
ab:= a*b;
for c from b to N-a-b do
if igcd(ab, c)=1 then A[a+b+c]:= A[a+b+c]+1 fi
od od od:
convert(A, list); # Robert Israel, May 09 2019
MATHEMATICA
Table[Sum[Sum[Floor[1/(GCD[i, j] GCD[j, n - i - j] GCD[i, n - i - j])], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 100}]
Table[Length[Select[IntegerPartitions[n, {3}], CoprimeQ@@#&]], {n, 0, 100}] (* Gus Wiseman, Oct 15 2020 *)
CROSSREFS
A023022 is the version for pairs.
A220377 is the strict case, with ordered version A220377*6.
A327516 counts these partitions of any length, with strict version A305713 and Heinz numbers A302696.
A337461 is the ordered version.
A337563 is the case with no 1's.
A337599 is the pairwise non-coprime instead of pairwise coprime version.
A337601 only requires the distinct parts to be pairwise coprime.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 and A337485 count pairwise coprime partitions with no 1's.
A200976 and A328673 count pairwise non-coprime partitions.
KEYWORD
nonn,look
AUTHOR
Wesley Ivan Hurt, Apr 24 2019
STATUS
approved
Number of superdiagonal bargraphs with area n.
+10
32
1, 1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 49, 68, 93, 126, 170, 229, 308, 413, 551, 731, 965, 1269, 1664, 2177, 2842, 3701, 4806, 6222, 8031, 10337, 13272, 17003, 21740, 27745, 35343, 44936, 57021, 72213, 91274, 115149, 145010, 182309, 228841, 286819, 358964, 448614, 559857, 697694
OFFSET
0,4
COMMENTS
Number of compositions n = p(1) + p(2) + ... + p(m) such that p(k) >= k (superdiagonal compositions), see example. - Joerg Arndt, Dec 19 2012
Number of (n-2)-bit binary strings in which the runs of ones are successively (1, 11, 111, 1111, ...), as in for example 00101100111011110011111000... To turn such a string into a composition, add 'X0 to the start of the empty string and the mark ' to the end, replace the runs 1, 11, 111,... with '01, '011, '0111, ... then consider the distances between the marks. - Andrew Woods, Jan 02 2015
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from Vincenzo Librandi)
Margaret Archibald, Aubrey Blecher, Arnold Knopfmacher, and Stephan Wagner, Subdiagonal and superdiagonal compositions, Art Disc. Appl. Math. (2024). See p. 10.
Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, Skew Dyck paths, area, and superdiagonal bargraphs, Journal of Statistical Planning and Inference, Vol. 140, Issue 6, June 2010, pp. 1550-1562.
FORMULA
G.f.: Sum_{n>=0} q^(n*(n+1)/2) / (1-q)^n.
a(n) = Sum_{k=0..floor((sqrt(8*n+1)-3)/2)} C(n-1-C(k+1,2),k), for n >= 1.
EXAMPLE
From Joerg Arndt, Dec 19 2012: (Start)
The a(9) = 18 compositions 9 = p(1) + p(2) + ... + p(m) such that p(k) >= k are
[ 1] [ 1 2 6 ]
[ 2] [ 1 3 5 ]
[ 3] [ 1 4 4 ]
[ 4] [ 1 5 3 ]
[ 5] [ 1 8 ]
[ 6] [ 2 2 5 ]
[ 7] [ 2 3 4 ]
[ 8] [ 2 4 3 ]
[ 9] [ 2 7 ]
[10] [ 3 2 4 ]
[11] [ 3 3 3 ]
[12] [ 3 6 ]
[13] [ 4 2 3 ]
[14] [ 4 5 ]
[15] [ 5 4 ]
[16] [ 6 3 ]
[17] [ 7 2 ]
[18] [ 9 ]
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
add(b(n-j, i+1), j=i..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 28 2014
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[x^(k*(k+1)/2) / (1-x)^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 05 2015 *)
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, i+1], {j, i, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
PROG
(PARI)
N=66; q='q+O('q^N);
gf=sum(n=0, N, q^(n*(n+1)/2) / (1-q)^n );
v=Vec(gf)
CROSSREFS
Cf. A063978 (compositions such that p(k) >= k-1 for k >= 2).
Cf. A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts).
Cf. A098131 (compositions with smallest part >= number of parts; g.f. Sum_{k>=0} x^(k^2)/(1-x)^k).
Cf. A143862 (compositions with every part divisible by number of parts; g.f. Sum_{k>=0} x^(k^2) / (1 - x^k)^k).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Row sums of A305556.
KEYWORD
nonn
AUTHOR
Joerg Arndt, Dec 04 2012
STATUS
approved
Number of strict integer partitions of n with a part dividing all the other parts.
+10
27
1, 1, 2, 2, 2, 4, 3, 5, 5, 7, 6, 12, 9, 13, 15, 20, 18, 28, 26, 37, 39, 47, 49, 71, 68, 85, 94, 117, 120, 159, 160, 201, 216, 257, 277, 348, 357, 430, 470, 562, 592, 720, 758, 901, 981, 1134, 1220, 1457, 1542, 1798, 1952, 2250, 2419, 2819, 3023, 3482, 3773, 4291
OFFSET
1,3
COMMENTS
If n > 0, we can assume such a part is the smallest. - Gus Wiseman, Apr 23 2021
Also the number of uniform (constant multiplicity) partitions of n containing 1, ranked by A367586. The strict case is A096765. The version without 1 is A329436. - Gus Wiseman, Dec 01 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 500 terms from John Tyler Rascoe)
FORMULA
a(n) = Sum_{d|n} A025147(d-1).
G.f.: Sum_{k>=1} (x^k*Product_{i>=2} (1+x^(k*i))).
EXAMPLE
From Gus Wiseman, Dec 01 2023: (Start)
The a(1) = 1 through a(8) = 5 strict partitions with a part dividing all the other parts:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (4,1) (4,2) (6,1) (6,2)
(5,1) (4,2,1) (7,1)
(3,2,1) (4,3,1)
(5,2,1)
The a(1) = 1 through a(8) = 5 uniform partitions containing 1:
(1) (11) (21) (31) (41) (51) (61) (71)
(111) (1111) (11111) (321) (421) (431)
(2211) (1111111) (521)
(111111) (3311)
(11111111)
(End)
MATHEMATICA
Take[ CoefficientList[ Expand[ Sum[x^k*Product[1 + x^(k*i), {i, 2, 62}], {k, 62}]], x], {2, 60}] (* Robert G. Wilson v, Nov 01 2004 *)
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[And@@IntegerQ/@(#/x), {x, #}]&]], {n, 0, 30}] (* Gus Wiseman, Apr 23 2021 *)
PROG
(PARI)
A_x(N) = {my(x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(i=2, N-k, (1+x^(k*i)))))}
A_x(50) \\ John Tyler Rascoe, Nov 19 2024
CROSSREFS
The non-strict version is A083710.
The case with no 1's is A098965.
The Heinz numbers of these partitions are A339563.
The strict complement is counted by A341450.
The version for "divisible by" instead of "dividing" is A343347.
The case where there is also a part divisible by all the others is A343378.
The case where there is no part divisible by all the others is A343381.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
KEYWORD
easy,nonn,changed
AUTHOR
Vladeta Jovovic, Oct 23 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 01 2004
Name shortened by Gus Wiseman, Apr 23 2021
STATUS
approved
Strictly superdiagonal compositions: compositions (p1, p2, p3, ...) of n such that pi > i.
+10
27
1, 0, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 25, 33, 44, 59, 79, 105, 138, 180, 234, 304, 395, 513, 665, 859, 1105, 1416, 1809, 2306, 2935, 3731, 4737, 6005, 7598, 9593, 12085, 15192, 19061, 23875, 29861, 37299, 46532, 57978, 72145, 89650, 111243, 137837, 170545, 210725, 260034, 320492, 394557, 485213, 596074, 731508
OFFSET
0,6
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: Sum_{n>=0} q^(n*(n+3)/2) / (1-q)^n. - Joerg Arndt, Mar 30 2014
EXAMPLE
The a(13) = 25 such composition of 13 are:
01: [ 2 3 8 ]
02: [ 2 4 7 ]
03: [ 2 5 6 ]
04: [ 2 6 5 ]
05: [ 2 7 4 ]
06: [ 2 11 ]
07: [ 3 3 7 ]
08: [ 3 4 6 ]
09: [ 3 5 5 ]
10: [ 3 6 4 ]
11: [ 3 10 ]
12: [ 4 3 6 ]
13: [ 4 4 5 ]
14: [ 4 5 4 ]
15: [ 4 9 ]
16: [ 5 3 5 ]
17: [ 5 4 4 ]
18: [ 5 8 ]
19: [ 6 3 4 ]
20: [ 6 7 ]
21: [ 7 6 ]
22: [ 8 5 ]
23: [ 9 4 ]
24: [ 10 3 ]
25: [ 13 ]
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
add(b(n-j, i+1), j=i..n))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 24 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1], {j, i, n}]]; a[n_] := b[n, 2]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
PROG
(PARI) N=66; q='q+O('q^N);
gf=sum(n=0, N, q^(n*(n+3)/2) / (1-q)^n );
v=Vec(gf) \\ Joerg Arndt, Mar 30 2014
CROSSREFS
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A238875 (subdiagonal partitions), A008930 (subdiagonal compositions), A010054 (subdiagonal partitions into distinct parts).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
KEYWORD
nonn
AUTHOR
Joerg Arndt, Mar 23 2014
STATUS
approved
Number of partitions of n into distinct parts, the least being 1.
+10
25
0, 1, 0, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 12, 15, 17, 21, 25, 29, 35, 41, 48, 56, 66, 76, 89, 103, 119, 137, 159, 181, 209, 239, 273, 312, 356, 404, 460, 522, 591, 669, 757, 853, 963, 1085, 1219, 1371, 1539, 1725, 1933, 2164, 2418, 2702, 3016, 3362, 3746, 4171, 4637
OFFSET
0,7
COMMENTS
The old entry with this sequence number was a duplicate of A071569.
a(n) is also the total number of 1's in all partitions of n into distinct parts. For n=6 there are partitions [6], [5,1], [4,2], [3,2,1] and only two contain a 1, hence a(6) = 2. - T. Amdeberhan, May 13 2012
a(n), n > 1 is the Euler transform of [0,1,1] joined with period [0,1]. - Georg Fischer, Aug 15 2020
LINKS
FORMULA
a(n) = A025147(n-1), n>1. - R. J. Mathar, Jul 31 2008
G.f.: x*Product_{j=2..infinity} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: x / ((1 + x) * Product_{k>0} (1 - x^(2*k-1))). - Michael Somos, Sep 10 2016
G.f.: Sum_{k>0} x^(k*(k+1)/2) / Product_{j=1..k-1} (1 - x^j). - Michael Somos, Sep 10 2016
EXAMPLE
G.f. = x + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 5*x^10 + 5*x^11 + ...
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-1)*(i+2)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> `if`(n<1, 0, b(n-1$2)):
seq(a(n), n=0..100); # Alois P. Heinz, Feb 07 2014
# Using the function EULER from Transforms (see link at the bottom of the page).
[0, 1, op(EULER([0, 1, seq(irem(n, 2), n=1..56)]))]; # Peter Luschny, Aug 19 2020
MATHEMATICA
p[_, 0] = 1; p[k_, n_] := p[k, n] = If[n < k, 0, p[k+1, n-k] + p[k+1, n]]; a[n_] := p[2, n-1]; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Apr 17 2014, after Reinhard Zumkeller *)
a[ n_] := SeriesCoefficient[ x / ((1 + x) Product[ 1 - x^j, {j, 1, n, 2}]), {x, 0, n}]; (* Michael Somos, Sep 10 2016 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k (k + 1)/2) / Product[ 1 - x^j, {j, 1, k - 1}], {k, 1, Quotient[-1 + Sqrt[8 n + 1], 2]}], {x, 0, n}]]; (* Michael Somos, Sep 10 2016 *)
Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 1], {n, 66}]] (* Robert Price, Jun 13 2020 *)
PROG
(PARI) {a(n) = if( n<1, 0, polcoeff( x / ((1 + x) * prod(k=1, (n+1)\2, 1 - x^(2*k-1), 1 + O(x^n))), n))}; /* Michael Somos, Sep 10 2016 */
CROSSREFS
Cf. A096749 (least=2), A022824 (3), A022825 (4), A022826 (5), A022827 (6), A022828 (7), A022829 (8), A022830 (9), A022831 (10).
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 28 2008
STATUS
approved
Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.
+10
25
1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
OFFSET
0,8
COMMENTS
Alternative name: Number of strict integer partitions of n with no part dividing all the others.
FORMULA
a(n > 0) = A000009(n) - Sum_{d|n} A025147(d-1).
EXAMPLE
The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
0 . . . . 32 . 43 53 54 64 65 75 76 86 87
52 72 73 74 543 85 95 96
432 532 83 732 94 A4 B4
92 A3 B3 D2
542 B2 653 654
632 643 743 753
652 752 762
742 932 843
832 5432 852
942
A32
6432
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], #=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]], {n, 0, 30}]
CROSSREFS
The complement is counted by A097986 (non-strict: A083710, rank: A339563).
The complement with no 1's is A098965 (non-strict: A083711).
The non-strict version is A338470.
The Heinz numbers of these partitions are A339562 (non-strict: A342193).
The case with greatest part not divisible by all others is A343379.
The case with greatest part divisible by all others is A343380.
A000009 counts strict partitions (non-strict: A000041).
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
Sequences with similar formulas: A024994, A047966, A047968, A168111.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 15 2021
STATUS
approved
Numbers with at least as many prime factors (counted with multiplicity) as half their sum of prime indices.
+10
24
1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 280, 288, 300, 320, 324, 336, 352
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of certain partitions counted by A025065, but different from palindromic partitions, which have Heinz numbers A265640.
FORMULA
A056239(a(n)) <= 2*A001222(a(n)).
a(n) = A322136(n)/4.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {} 30: {1,2,3}
2: {1} 32: {1,1,1,1,1}
3: {2} 36: {1,1,2,2}
4: {1,1} 40: {1,1,1,3}
6: {1,2} 48: {1,1,1,1,2}
8: {1,1,1} 54: {1,2,2,2}
9: {2,2} 56: {1,1,1,4}
10: {1,3} 60: {1,1,2,3}
12: {1,1,2} 64: {1,1,1,1,1,1}
16: {1,1,1,1} 72: {1,1,1,2,2}
18: {1,2,2} 80: {1,1,1,1,3}
20: {1,1,3} 81: {2,2,2,2}
24: {1,1,1,2} 84: {1,1,2,4}
27: {2,2,2} 88: {1,1,1,5}
28: {1,1,4} 90: {1,2,2,3}
MATHEMATICA
Select[Range[100], PrimeOmega[#]>=Total[Cases[FactorInteger[#], {p_, k_}:>k*PrimePi[p]]]/2&]
CROSSREFS
The case with difference at least 1 is A322136.
The case of equality is A340387, counted by A000041 or A035363.
The opposite version is A344291, counted by A110618.
The conjugate version is A344414, with even-weight case A344416.
A025065 counts palindromic partitions, ranked by A265640.
A056239 adds up prime indices, row sums of A112798.
A300061 lists numbers whose sum of prime indices is even.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2021
STATUS
approved

Search completed in 0.045 seconds