[go: up one dir, main page]

login
A257991
Number of odd parts in the partition having Heinz number n.
75
0, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 2, 0, 1, 1, 4, 1, 1, 0, 3, 0, 2, 1, 3, 2, 1, 0, 2, 0, 2, 1, 5, 1, 2, 1, 2, 0, 1, 0, 4, 1, 1, 0, 3, 1, 2, 1, 4, 0, 3, 1, 2, 0, 1, 2, 3, 0, 1, 1, 3, 0, 2, 0, 6, 1, 2, 1, 3, 1, 2, 0, 3, 1, 1, 2, 2, 1, 1, 0, 5, 0, 2, 1, 2, 2, 1, 0, 4
OFFSET
1,4
COMMENTS
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
REFERENCES
George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
LINKS
FORMULA
From Amiram Eldar, Jun 17 2024: (Start)
Totally additive with a(p) = 1 if primepi(p) is odd, and 0 otherwise.
a(n) = A257992(n) + A195017(n). (End)
EXAMPLE
a(12) = 2 because the partition having Heinz number 12 = 2*2*3 is [1,1,2], having 2 odd parts.
MAPLE
with(numtheory): a := proc (n) local B, ct, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for q to nops(B(n)) do if `mod`(B(n)[q], 2) = 1 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 135);
# second Maple program:
a:= n-> add(`if`(numtheory[pi](i[1])::odd, i[2], 0), i=ifactors(n)[2]):
seq(a(n), n=1..120); # Alois P. Heinz, May 09 2016
MATHEMATICA
a[n_] := Sum[If[PrimePi[i[[1]]] // OddQ, i[[2]], 0], {i, FactorInteger[n]} ]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Dec 10 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 18 2015
STATUS
approved