[go: up one dir, main page]

login
A325691
Number of length-3 integer partitions of n whose largest part is not greater than the sum of the other two.
12
0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 8, 11, 10, 13, 12, 15, 14, 18, 16, 20, 19, 23, 21, 26, 24, 29, 27, 32, 30, 36, 33, 39, 37, 43, 40, 47, 44, 51, 48, 55, 52, 60, 56, 64, 61, 69, 65, 74, 70, 79, 75, 84, 80, 90, 85, 95, 91, 101, 96, 107, 102, 113
OFFSET
0,7
COMMENTS
Also the number of possible triples of edge-lengths of a triangle with perimeter n, where degenerate (self-intersecting) triangles are allowed.
The number of triples (a,b,c) for 1 <= a <= b <= c <= a+b and a+b+c = n. - Yuchun Ji, Oct 15 2020
LINKS
Colin Defant, Michael Joseph, Matthew Macauley, and Alex McDonough, Torsors and tilings from toric toggling, arXiv:2305.07627 [math.CO], 2023. See g.f. at p. 20.
FORMULA
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + x - x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. (End)
a(n) = A005044(n+3) - A000035(n+3). i.e., remove the only one triple (a=0,b,b) if n is even from the A005044 which is the number of triples (a,b,c) for 0 <= a <= b <= c <= a+b and a+b+c = n. - Yuchun Ji, Oct 15 2020
The above conjectured formulas are true. - Stefano Spezia, May 19 2023
EXAMPLE
The a(3) = 1 through a(12) = 6 partitions:
(111) (211) (221) (222) (322) (332) (333) (433) (443) (444)
(321) (331) (422) (432) (442) (533) (543)
(431) (441) (532) (542) (552)
(541) (551) (633)
(642)
(651)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n, {3}], #[[1]]<=#[[2]]+#[[3]]&]], {n, 0, 30}]
CROSSREFS
Cf. A001399, A005044 (nondegenerate triangles), A008642, A069905, A124278.
Sequence in context: A363959 A366387 A083802 * A326668 A198318 A100881
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, May 15 2019
STATUS
approved