OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
FORMULA
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
9: {2,2}
10: {1,3}
25: {3,3}
27: {2,2,2}
30: {1,2,3}
75: {2,3,3}
81: {2,2,2,2}
90: {1,2,2,3}
100: {1,1,3,3}
225: {2,2,3,3}
243: {2,2,2,2,2}
250: {1,3,3,3}
270: {1,2,2,2,3}
300: {1,1,2,3,3}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], EvenQ[Total[primeMS[#]]]&&PrimeOmega[#]<=Total[primeMS[#]]/2&&Max@@primeMS[#]<=3&]
CROSSREFS
These partitions are counted by A001399.
Allowing any number of parts and sum gives A051037.
Allowing parts > 3 and any length gives A300061.
Not requiring the sum of prime indices to be even gives A344293.
Allowing any number of parts (but still with even sum) gives A344297.
Allowing parts > 3 gives A344413.
A001358 lists semiprimes.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 15 2021
STATUS
approved