OFFSET
0,2
COMMENTS
Row lengths are A000124(n) = 1 + n*(n+1)/2.
EXAMPLE
Triangle begins:
1
2 1
4 2 2 1
8 4 4 5 2 2 1
16 8 8 10 10 7 5 5 2 2 1
32 16 16 20 20 23 15 15 12 12 8 5 5 2 2 1
64 32 32 40 40 46 47 38 33 35 29 28 21 17 14 13 8 5 5 2 2 1
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
-------------------------------------------------------
n=0: 1
n=1: 2 1
n=2: 4 2 2 1
n=3: 8 4 4 5 2 2 1
n=4: 16 8 8 10 10 7 5 5 2 2
n=5: 32 16 16 20 20 23 15 15 12 12
n=6: 64 32 32 40 40 46 47 38 33 35
n=7: 128 64 64 80 80 92 94 102 79 82
n=8: 256 128 128 160 160 184 188 204 207 184
n=9: 512 256 256 320 320 368 376 408 414 440
The T(5,8) = 12 subsets are:
{3,5} {1,2,5} {1,2,3,4} {1,2,3,4,5}
{1,3,4} {1,2,3,5}
{1,3,5} {1,2,4,5}
{2,3,5} {1,3,4,5}
{3,4,5} {2,3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], k]&]], {n, 0, 8}, {k, 0, n*(n+1)/2}]
CROSSREFS
Row lengths are A000124 = number of distinct sums of subsets of {1..n}.
Central column/main diagonal is A365376.
A000009 counts sets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Sep 08 2023
STATUS
approved