[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a011900 -id:a011900
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that 8*k^2 + 8*k - 7 is a square.
+0
1
1, 7, 43, 253, 1477, 8611, 50191, 292537, 1705033, 9937663, 57920947, 337588021, 1967607181, 11468055067, 66840723223, 389576284273, 2270616982417, 13234125610231, 77134136678971, 449570694463597, 2620290030102613, 15272169486152083, 89012726886809887, 518804191834707241
OFFSET
1,2
COMMENTS
a(n) is the n-th almost cobalancing number of second type (see Tekcan and Erdem).
FORMULA
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 3.
a(n) = (3*(3 - 2*sqrt(2))^n*(2 + sqrt(2)) + 3*(2 - sqrt(2))*(3 + 2*sqrt(2))^n - 4)/8.
O.g.f.: x*(1 + x^2)/((1 - x)*(1 - 6*x + x^2)).
E.g.f.: (3*(2 + sqrt(2))*(cosh(3*x - 2*sqrt(2)*x) + sinh(3*x - 2*sqrt(2)*x)) + 3*(2 - sqrt(2))*(cosh(3*x + 2*sqrt(2)*x) + sinh(3*x + 2*sqrt(2)*x)) - 4*(cosh(x) + sinh(x)) - 8)/8.
a(n) = 3*A011900(n) - 2 = 6*A053142(n) + 1. - Hugo Pfoertner, Nov 26 2022
EXAMPLE
a(2) = 7 is a term since 8*7^2 + 8*7 - 7 = 441 = 21^2.
MATHEMATICA
LinearRecurrence[{7, -7, 1}, {1, 7, 43}, 24]
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Nov 26 2022
STATUS
approved
a(n) = t(n) - s(n) where s(n) = n*(n-1)/2 is the sum of the first n nonnegative integers and t(n) is the smallest sum of consecutive integers starting from n such that t(n) > s(n).
+0
1
1, 1, 4, 3, 1, 6, 3, 10, 6, 1, 10, 4, 15, 8, 21, 13, 4, 19, 9, 26, 15, 3, 22, 9, 30, 16, 1, 24, 8, 33, 16, 43, 25, 6, 35, 15, 46, 25, 3, 36, 13, 48, 24, 61, 36, 10, 49, 22, 63, 35, 6, 49, 19, 64, 33, 1, 48, 15, 64, 30, 81, 46, 10, 63, 26, 81, 43, 4, 61, 21, 80, 39, 100, 58, 15, 78, 34, 99
OFFSET
1,3
COMMENTS
Record high values of a(n)/n approach sqrt(2) and occur at values of n that are terms of A011900; a(A011900(k)) = A046090(k). - Jon E. Schoenfield, Jun 23 2022
It appears that the sequence 1,2,4,5,6,8,... (the largest integer in the t(n) sum) is A288998. - Michel Marcus, Jun 24 2022
FORMULA
From Jon E. Schoenfield, Jun 23 2022: (Start)
a(n) = t(n) - s(n) where
s(n) = n*(n-1)/2,
j = floor(sqrt(8*n^2 - 8*n + 1)),
m = ceiling(j/2) - n + 1, and
t(n) = (m*(m + 2*n - 1))/2. (End)
EXAMPLE
a(6) = -s(6) + t(6):
s(6) is the sum of the first 6 nonnegative integers = 6*5 / 2 = 15.
t(6) is the smallest sum k of consecutive integers starting from n = 6 such that k > s(6) = 15.
The first few sets of consecutive integers starting from 6 are
{6}, whose elements add up to 6,
{6, 7}, whose elements add up to 13,
{6, 7, 8}, whose elements add up to 21,
{6, 7, 8, 9}, whose elements add up to 30,
...
the smallest sum that is > 15 is 21, so t(6) = 21, so a(6) = -15 + 21 = 6.
PROG
(JavaScript)
function a(n) {
var sum = 0;
for (var i = 0; i < n; i++)
sum -= i;
while (sum <= 0)
sum += i++;
return sum;
}
(PARI) a(n) = my(t=0, s=n*(n-1)/2, k=n); until (t > s, t += k; k ++); t-s; \\ Michel Marcus, Jun 24 2022
(Python)
from math import isqrt
def A355182(n): return ((m:=(isqrt(((k:=n*(n-1))<<3)+1)+1)>>1)*(m+1)>>1)-k # Chai Wah Wu, Jul 14 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrea La Rosa, Jun 23 2022
STATUS
approved
a(0) = 3, a(1) = 3, and a(n) = 6*a(n-1) - a(n-2) - 4 for n >= 2.
+0
9
3, 3, 11, 59, 339, 1971, 11483, 66923, 390051, 2273379, 13250219, 77227931, 450117363, 2623476243, 15290740091, 89120964299, 519435045699, 3027489309891, 17645500813643, 102845515571963, 599427592618131, 3493720040136819, 20362892648202779, 118683635849079851, 691738922446276323
OFFSET
0,1
COMMENTS
One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
FORMULA
G.f.: (3 - 18*x + 11*x^2)/((1 - x)*(1 - 6*x + x^2)). - Stefano Spezia, Jan 22 2022
a(n) = 2*A001653(n) + 1 = 4*A011900(n-1) - 1 for n >= 1. - Hugo Pfoertner, Jan 22 2022
CROSSREFS
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350922, A350923, A350924, A350925, A350926.
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Jan 22 2022
STATUS
approved
Number of perfect matchings on a triangular lattice of width 4 and length n.
+0
0
1, 1, 5, 15, 56, 203, 749, 2777, 10293, 38240, 141997, 527593, 1960029, 7282483, 27057400, 100531559, 373522965, 1387822193, 5156442953, 19158736256, 71184183353, 264484479633, 982690786037, 3651182836279, 13565952140920, 50404229548515, 187276671274621
OFFSET
0,3
FORMULA
G.f.: (1-z)*(1+z)*(1-z-5*z^2-z^3+z^4)/((1+z-3*z^2-3*z^3+z^4)*(1-3*z-3*z^2+z^3+z^4)).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sergey Perepechko, Jul 13 2019
STATUS
approved
Numbers n such that n!/m! is a triangular number for some m < n-1.
+0
1
3, 5, 6, 7, 11, 14, 15, 58, 85, 493, 638, 2871, 16731, 97513, 568345, 3312555, 19306983, 112529341, 655869061, 3822685023, 22280241075, 129858761425, 756872327473, 4411375203411, 25711378892991, 149856898154533, 873430010034205, 5090723162050695
OFFSET
1,1
COMMENTS
A011900 is a subsequence, except A011900(0)=1.
According to Melissen's comment in A097571, m > n-7.
FORMULA
a(n) = 7a(n-1) - 7a(n-2) + a(n-3) for n > 14. - Charles R Greathouse IV, Jun 28 2013
G.f.: x * (3 -16*x -8*x^2 -3*x^3 -x^4 -20*x^5 -13*x^6 +40*x^7 -230*x^8 +289*x^9 -2276*x^10 +1771*x^11 +607*x^12 -145*x^13) / ((1-x)*(1-6*x+x^2)). - Bruno Berselli, Jun 28 2013
MATHEMATICA
CoefficientList[Series[(3 - 16 x - 8 x^2 - 3 x^3 - x^4 - 20 x^5 - 13 x^6 + 40 x^7 - 230 x^8 + 289 x^9 - 2276 x^10 + 1771 x^11 + 607 x^12 - 145 x^13) / ((1 - x) (1 - 6 x + x^2)), {x, 0, 30}], x] (* Bruno Berselli, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Jun 27 2013
STATUS
approved
Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.
+0
9
1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
OFFSET
0,5
COMMENTS
Let b(n,x) = sum {k = 0..n} binomial(n+k,2*k)*x^k denote the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := 1/2*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = -1), A109613(x = -2), A146983 (x = -3) and A084159(x = -4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the Morgan-Voyce polynomials being noted - see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u*T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u*T(n,u)*T(n+1,u).
LINKS
Eric Weisstein's World of Mathematics, Morgan-Voyce polynomials
FORMULA
T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1). O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array [x/(1-x)^3, 2*x/(1-x)^2].
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*sum {k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x. Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {sum {k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {sum {k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently sum {k = 0..inf} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,-1) = A133872(n+1);
R(n,2) = A011900(n); R(n,-2) = (-1)^n*A109613(n); R(n,3) = A182432;
R(n,-3) = (-1)^n*A146983(n); R(n,4) = A054318(n+1); R(n,-4) = (-1)^n*A084159(n).
EXAMPLE
Triangle begins
.n\k.|..0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....3....2
..3..|..1....6...10....4
..4..|..1...10...30...28....8
..5..|..1...15...70..112...72...16
..6..|..1...21..140..336..360..176...32
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Apr 30 2012
STATUS
approved
Recurrence a(n)*a(n-2) = a(n-1)*(a(n-1)+3) with a(0) = 1, a(1) = 4.
+0
7
1, 4, 28, 217, 1705, 13420, 105652, 831793, 6548689, 51557716, 405913036, 3195746569, 25160059513, 198084729532, 1559517776740, 12278057484385, 96664942098337, 761041479302308, 5991666892320124, 47172293659258681, 371386682381749321
OFFSET
0,2
COMMENTS
The non-linear recurrence equation a(n)*a(n-2) = a(n-1)*(a(n-1)+r) with initial conditions a(0) = 1, a(1) = 1+r has the solution a(n) = 1/2 + 1/2*sum_{k=0..n} (2*r)^k*binomial(n+k,2*k) = 1/2 + b(n,2*r)/2, where b(n,x) are the Morgan-Voyce polynomials of A085478. The recurrence produces sequences A101265 (r = 1), A011900 (r = 2) and A054318 (r = 4), as well as signed versions of A133872 (r = -1), A109613(r = -2), A146983 (r = -3) and A084159(r = -4).
Also the indices of centered pentagonal numbers (A005891) which are also centered triangular numbers (A005448). - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0. - Colin Barker, Jan 01 2015
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1116 (first 201 terms from Vincenzo Librandi)
Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
FORMULA
a(n) = 1/2 + 1/2*sum_{k = 0..n} 6^k*binomial(n+k,2*k).
a(n) = R(n,3) where R(n,x) denotes the row polynomials of A211955.
a(n) = 1/u*T(n,u)*T(n+1,u) with u = sqrt(5/2) and T(n,x) the Chebyshev polynomial of the first kind.
Recurrence equation: a(n) = 8*a(n-1) - a(n-2)-3 with a(0) = 1, a(1) = 4.
O.g.f.: (1 - 5*x + x^2)/((1 - x)*(1 - 8*x + x^2)) = 1 + 4*x + 28*x^2 + ....
Sum_{n>=0} 1/a(n) = sqrt(5/3); 5 - 3*(sum_{n=0..2*n} 1/a(k))^2 = 2/A070997(n)^2.
a(0)=1, a(1)=4, a(2)=28, a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3). - Harvey P. Dale, May 14 2012
MATHEMATICA
RecurrenceTable[{a[0]==1, a[1]==4, a[n]==(a[-1+n] (3+a[-1+n]))/a [-2+n]}, a[n], {n, 30}] (* or *) LinearRecurrence[{9, -9, 1}, {1, 4, 28}, 30] (* Harvey P. Dale, May 14 2012 *)
PROG
(Magma) I:=[1, 4, 28]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, May 18 2012
(PARI) Vec((1-5*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 30 2012
STATUS
approved
a(2n) = A011900(n), a(2n+1) = A001109(n+1).
+0
3
1, 1, 3, 6, 15, 35, 85, 204, 493, 1189, 2871, 6930, 16731, 40391, 97513, 235416, 568345, 1372105, 3312555, 7997214, 19306983, 46611179, 112529341, 271669860, 655869061, 1583407981, 3822685023, 9228778026, 22280241075, 53789260175
OFFSET
0,3
COMMENTS
a(n+1) - a(n) = A097075(n+1), a(n) + a(n+1) = A024537(n+1), a(n+2) - a(n+1) - a(n) = A105635(n+1).
For n >= 1, a(n) is also the edge cover number and edge cut count of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Also the independence number, Lovasz number, and Shannon capacity of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Floretion Algebra Multiplication Program, FAMP Code: -2jbasejseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e
REFERENCES
C. Dement, Floretion Integer Sequences (work in progress).
LINKS
Eric Weisstein's World of Mathematics, Edge Cover Number.
Eric Weisstein's World of Mathematics, Edge Cut.
Eric Weisstein's World of Mathematics, Independence Number.
Eric Weisstein's World of Mathematics, Lovasz Number.
Eric Weisstein's World of Mathematics, Pell Graph.
Eric Weisstein's World of Mathematics, Shannon Capacity.
FORMULA
G.f.: y/(y^2-1) where y=x/(x^2+x-1) if offset=1. - Michael Somos, Sep 09 2006
G.f.: (-1+x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)).
Diagonal sums of A119468. - Paul Barry, May 21 2006
a(n) = (1 + (-1)^n + 2 A000129(n+1))/4. - Eric W. Weisstein, Aug 01 2023
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Eric W. Weisstein, Aug 01 2023
MAPLE
seq(iquo(fibonacci(n, 2), 1)-iquo(fibonacci(n, 2), 2), n=1..30); # Zerinvary Lajos, Apr 20 2008
with(combinat):seq(ceil(fibonacci(n, 2)/2), n=1..30); # Zerinvary Lajos, Jan 12 2009
MATHEMATICA
Ceiling[Fibonacci[Range[20], 2]/2]
Table[(1 + (-1)^n + 2 Fibonacci[n + 1, 2])/4, {n, 0, 20}] // Expand
CoefficientList[Series[-(-1 + x + x^2)/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x]
LinearRecurrence[{2, 2, -2, -1}, {1, 1, 3, 6}, 20]
PROG
(PARI) {a(n)=local(y); if(n<0, 0, n++; y=x/(x^2+x-1)+x*O(x^n); polcoeff( y/(y^2-1), n))} /* Michael Somos, Sep 09 2006 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Oct 18 2005
STATUS
approved
a(n) = A001541(n)*A001653(n+1)*A002315(n).
+0
3
1, 105, 20213, 3998709, 791704585, 156753394977, 31036379835581, 6145046450172525, 1216688160731724433, 240898110778299543129, 47696609245941810082565, 9443687732585695622131557
OFFSET
0,2
FORMULA
2*a(n) = A001109(3*n+1) + A001109(n+1).
a(n) = sqrt(A011900(2*n)*A046090(2*n)*A001109(2*n+1)).
a(n) = A001541(3*n) + 2*A001109(n)*A001541(n-1)*A001541(n).
For n>0, a(n) = A001652(3*n) - A053141(2*n)*A002315(n-1) - A001652(n-1).
G.f.: (1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
2*a(n) = A001109(n+1) + A097731(n) + 6*A097731(n-1). - R. J. Mathar, Jan 31 2024
EXAMPLE
a(1) = 105 = 3*5*7.
MATHEMATICA
CoefficientList[Series[(1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)), {x, 0, 30}], x] (* G. C. Greubel, Jul 15 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1))) \\ G. C. Greubel, Jul 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)))); // G. C. Greubel, Jul 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Charlie Marion, Aug 24 2005
STATUS
approved
Numbers that are both centered triangular numbers (A005448) and centered hexagonal numbers (A003215).
+0
1
1, 19, 631, 21421, 727669, 24719311, 839728891, 28526062969, 969046412041, 32919051946411, 1118278719765919, 37988557420094821, 1290492673563457981, 43838762343737476519, 1489227427013510743651, 50589893756115627807601, 1718567160280917834714769
OFFSET
1,2
COMMENTS
The centered hexagonal numbers are given by 3*p^2 - 3*p + 1 while the centered triangular numbers are given by (3*r^2 + 3*r + 2)/2. A natural number is both of the above numbers if and only if there exist numbers p and r such that 2*(2p-1)^2 = (2*r+1)^2+1. The Diophantine equation X^2 = 2*Y^2 - 1 has the following solutions: X is given by 1, 7, 41, 239, ..., i.e., A002315, and Y is given by A001653. The first equation gives r with 0, 3, 20, 119, 6906, i.e., A001652, and p with 1, 3, 15, 85, 493, ..., i.e., A011900.
FORMULA
a(n+2) = 34*a(n+1) - a(n) - 14.
a(n+1) = 17*a(n) - 7 + sqrt(288*a(n)^2 - 252*a(n) + 45).
G.f.: h(z)=(z*(1-16*z+z^2))/((1-z)*(1-34*z+z^2)).
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). - Colin Barker, Jan 02 2015
a(n) = (14+(9+6*sqrt(2))*(17+12*sqrt(2))^(-n)+(9-6*sqrt(2))*(17+12*sqrt(2))^n)/32. - Colin Barker, Mar 02 2016
MATHEMATICA
a[n_] := 17*n - 7 + Sqrt[288*n^2 - 252*n + 45]; NestList[a, 1, 20] (* Stefan Steinerberger, Sep 18 2007 *)
LinearRecurrence[{35, -35, 1}, {1, 19, 631}, 30] (* Harvey P. Dale, Jan 16 2016 *)
PROG
(PARI) Vec(-x*(x^2-16*x+1)/((x-1)*(x^2-34*x+1)) + O(x^100)) \\ Colin Barker, Jan 02 2015
CROSSREFS
Cf. A003215 (Centered hexagonal numbers), A005448 (Centered triangular numbers).
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Sep 18 2007
EXTENSIONS
More terms from Stefan Steinerberger, Sep 18 2007
STATUS
approved

Search completed in 0.039 seconds