Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Mar 15 2024 21:27:56
%S 1,1,3,6,15,35,85,204,493,1189,2871,6930,16731,40391,97513,235416,
%T 568345,1372105,3312555,7997214,19306983,46611179,112529341,271669860,
%U 655869061,1583407981,3822685023,9228778026,22280241075,53789260175
%N a(2n) = A011900(n), a(2n+1) = A001109(n+1).
%C a(n+1) - a(n) = A097075(n+1), a(n) + a(n+1) = A024537(n+1), a(n+2) - a(n+1) - a(n) = A105635(n+1).
%C For n >= 1, a(n) is also the edge cover number and edge cut count of the n-Pell graph. - _Eric W. Weisstein_, Aug 01 2023
%C Also the independence number, Lovasz number, and Shannon capacity of the n-Pell graph. - _Eric W. Weisstein_, Aug 01 2023
%C Floretion Algebra Multiplication Program, FAMP Code: -2jbasejseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e
%D C. Dement, Floretion Integer Sequences (work in progress).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCoverNumber.html">Edge Cover Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCut.html">Edge Cut</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependenceNumber.html">Independence Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LovaszNumber">Lovasz Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellGraph.html">Pell Graph</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ShannonCapacity.html">Shannon Capacity</a>.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-2,-1).
%F G.f.: y/(y^2-1) where y=x/(x^2+x-1) if offset=1. - _Michael Somos_, Sep 09 2006
%F G.f.: (-1+x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)).
%F Diagonal sums of A119468. - _Paul Barry_, May 21 2006
%F a(n) = (1 + (-1)^n + 2 A000129(n+1))/4. - _Eric W. Weisstein_, Aug 01 2023
%F a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - _Eric W. Weisstein_, Aug 01 2023
%p seq(iquo(fibonacci(n,2),1)-iquo(fibonacci(n,2),2),n=1..30); # _Zerinvary Lajos_, Apr 20 2008
%p with(combinat):seq(ceil(fibonacci(n,2)/2), n=1..30); # _Zerinvary Lajos_, Jan 12 2009
%t Ceiling[Fibonacci[Range[20], 2]/2]
%t Table[(1 + (-1)^n + 2 Fibonacci[n + 1, 2])/4, {n, 0, 20}] // Expand
%t CoefficientList[Series[-(-1 + x + x^2)/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x]
%t LinearRecurrence[{2, 2, -2, -1}, {1, 1, 3, 6}, 20]
%o (PARI) {a(n)=local(y); if(n<0, 0, n++; y=x/(x^2+x-1)+x*O(x^n); polcoeff( y/(y^2-1), n))} /* _Michael Somos_, Sep 09 2006 */
%Y Cf. A113224, A002315, A082639, A100828.
%K easy,nonn
%O 0,3
%A _Creighton Dement_, Oct 18 2005