[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097075
Expansion of g.f. (1-x-x^2)/(1-x-3*x^2-x^3).
7
1, 0, 2, 3, 9, 20, 50, 119, 289, 696, 1682, 4059, 9801, 23660, 57122, 137903, 332929, 803760, 1940450, 4684659, 11309769, 27304196, 65918162, 159140519, 384199201, 927538920, 2239277042, 5406093003, 13051463049, 31509019100, 76069501250
OFFSET
0,3
COMMENTS
Counts closed walks of length n at a vertex of a triangle, to which a loop has been added at one of the other vertices.
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [0, 1, 1; 1, 0, 1; 1, 1, 1].
LINKS
J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
FORMULA
a(n) = ((1+sqrt(2))^n + (1-sqrt(2))^n + 2*(-1)^n)/4.
a(n) = a(n-1) + 3*a(n-2) + a(n-3).
a(n) = (1/2)*((-1)^n + Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^k).
a(n) = ((-1)^n + A001333(n))/2.
E.g.f.: (cosh(x) + exp(x)*cosh(sqrt(2)*x) - sinh(x))/2. - Stefano Spezia, Mar 31 2024
MATHEMATICA
LinearRecurrence[{1, 3, 1}, {1, 0, 2}, 41] (* or *) Table[(LucasL[n, 2] +2*(-1)^n)/4, {n, 0, 40}] (* G. C. Greubel, Aug 18 2022 *)
PROG
(PARI) Vec((1-x-x^2)/(1-x-3*x^2-x^3) + O(x^50)) \\ Michel Marcus, Mar 25 2014
(Magma) [(Evaluate(DicksonFirst(n, -1), 2) +2*(-1)^n)/4: n in [0..40]]; // G. C. Greubel, Aug 18 2022
(SageMath) [(lucas_number2(n, 2, -1) +2*(-1)^n)/4 for n in (0..40)] # G. C. Greubel, Aug 18 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 22 2004
STATUS
approved