# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a113225
Showing 1-1 of 1
%I A113225 #34 Mar 15 2024 21:27:56
%S A113225 1,1,3,6,15,35,85,204,493,1189,2871,6930,16731,40391,97513,235416,
%T A113225 568345,1372105,3312555,7997214,19306983,46611179,112529341,271669860,
%U A113225 655869061,1583407981,3822685023,9228778026,22280241075,53789260175
%N A113225 a(2n) = A011900(n), a(2n+1) = A001109(n+1).
%C A113225 a(n+1) - a(n) = A097075(n+1), a(n) + a(n+1) = A024537(n+1), a(n+2) - a(n+1) - a(n) = A105635(n+1).
%C A113225 For n >= 1, a(n) is also the edge cover number and edge cut count of the n-Pell graph. - _Eric W. Weisstein_, Aug 01 2023
%C A113225 Also the independence number, Lovasz number, and Shannon capacity of the n-Pell graph. - _Eric W. Weisstein_, Aug 01 2023
%C A113225 Floretion Algebra Multiplication Program, FAMP Code: -2jbasejseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e
%D A113225 C. Dement, Floretion Integer Sequences (work in progress).
%H A113225 Eric Weisstein's World of Mathematics, Edge Cover Number.
%H A113225 Eric Weisstein's World of Mathematics, Edge Cut.
%H A113225 Eric Weisstein's World of Mathematics, Independence Number.
%H A113225 Eric Weisstein's World of Mathematics, Lovasz Number.
%H A113225 Eric Weisstein's World of Mathematics, Pell Graph.
%H A113225 Eric Weisstein's World of Mathematics, Shannon Capacity.
%H A113225 Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
%F A113225 G.f.: y/(y^2-1) where y=x/(x^2+x-1) if offset=1. - _Michael Somos_, Sep 09 2006
%F A113225 G.f.: (-1+x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)).
%F A113225 Diagonal sums of A119468. - _Paul Barry_, May 21 2006
%F A113225 a(n) = (1 + (-1)^n + 2 A000129(n+1))/4. - _Eric W. Weisstein_, Aug 01 2023
%F A113225 a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - _Eric W. Weisstein_, Aug 01 2023
%p A113225 seq(iquo(fibonacci(n,2),1)-iquo(fibonacci(n,2),2),n=1..30); # _Zerinvary Lajos_, Apr 20 2008
%p A113225 with(combinat):seq(ceil(fibonacci(n,2)/2), n=1..30); # _Zerinvary Lajos_, Jan 12 2009
%t A113225 Ceiling[Fibonacci[Range[20], 2]/2]
%t A113225 Table[(1 + (-1)^n + 2 Fibonacci[n + 1, 2])/4, {n, 0, 20}] // Expand
%t A113225 CoefficientList[Series[-(-1 + x + x^2)/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x]
%t A113225 LinearRecurrence[{2, 2, -2, -1}, {1, 1, 3, 6}, 20]
%o A113225 (PARI) {a(n)=local(y); if(n<0, 0, n++; y=x/(x^2+x-1)+x*O(x^n); polcoeff( y/(y^2-1), n))} /* _Michael Somos_, Sep 09 2006 */
%Y A113225 Cf. A113224, A002315, A082639, A100828.
%K A113225 easy,nonn
%O A113225 0,3
%A A113225 _Creighton Dement_, Oct 18 2005
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE