[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a111647 -id:a111647
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A001541(n)^2 + A001653(n+1)^2 + A002315(n)^2.
+10
3
3, 83, 2811, 95483, 3243603, 110187011, 3743114763, 127155714923, 4319551192611, 146737584833843, 4984758333158043, 169335045742539611, 5752406796913188723, 195412496049305876963
OFFSET
0,1
FORMULA
a(n) = A038761(n)^2 + 2, e.g., 95483 = 309^2 + 2.
a(n) = A001652(2*n+1) - A001109(n+1)^2 - Sum_{k=1..n-1} A038723(2*n), e.g., 95483 = 137903 - 204^2 - (23 + 781).
For n > 0, 2*a(n) + A001652(2*n-1) = A001653(2*n+2), e.g., 2*2811 + 119 = 5741.
G.f.: -(11*x^2-22*x+3) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Dec 14 2014 (Empirical g.f. confirmed for more terms and recurrence of source sequences. - Ray Chandler, Feb 05 2024)
EXAMPLE
a(1) = 83 = 3^2+5^2+7^2.
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {3, 83, 2811}, 20] (* Paolo Xausa, Feb 06 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Charlie Marion, Aug 24 2005
STATUS
approved
a(n) = A001541(n)*A001653(n+1) + A001541(n)*A002315(n) + A001653(n+1)*A002315(n).
+10
3
3, 71, 2379, 80783, 2744211, 93222359, 3166815963, 107578520351, 3654502875939, 124145519261543, 4217293152016491, 143263821649299119, 4866752642924153523, 165326326037771920631, 5616228332641321147899
OFFSET
0,1
FORMULA
a(n) = A001653(2n+2) - 2*A002315(n)^2, e.g., 2379 = 5741 - 2*41^2;
a(n) = A001652(2n) + A002315(n)^2 + 2, e.g., 2379 = 696 + 41^2 + 2;
a(n) = 2*A046176(n+1)+1, e.g., 2379 = 2*1189 + 1.
G.f.: (x^2+34*x-3) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Dec 14 2014 [adjusted for corrected term and empirical g.f. confirmed for more terms and recurrence of source sequences. - Ray Chandler, Feb 05 2024]
EXAMPLE
a(1) = 71 = 3*5 + 3*7 + 5*7.
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {3, 71, 2379}, 20] (* Paolo Xausa, Feb 06 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Charlie Marion, Aug 24 2005
EXTENSIONS
a(3) = 80783 corrected by Ray Chandler, Feb 05 2024
STATUS
approved

Search completed in 0.006 seconds