[go: up one dir, main page]

login
Search: a017245 -id:a017245
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 9*n + 1.
+10
43
1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
OFFSET
0,2
COMMENTS
Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010
FORMULA
G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
MATHEMATICA
Range[1, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2, -1}, {1, 10}, 60] (* Harvey P. Dale, Dec 27 2014 *)
PROG
(Sage) [i+1 for i in range(480) if gcd(i, 9) == 9] # Zerinvary Lajos, May 20 2009
(PARI) forstep(n=1, 500, 9, print1(n", ")) \\ Charles R Greathouse IV, May 28 2011
(Haskell)
a017173 = (+ 1) . (* 9)
a017173_list = [1, 10 ..] -- Reinhard Zumkeller, Feb 04 2014
CROSSREFS
Cf. A093644 ((9, 1) Pascal, column m=1).
Cf. A010888.
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).
KEYWORD
nonn,easy
STATUS
approved
a(n) = 8*n+6.
+10
31
6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, 318, 326, 334, 342, 350, 358, 366, 374, 382, 390, 398, 406, 414, 422, 430
OFFSET
0,1
COMMENTS
First differences of A002943. - Aaron David Fairbanks, May 13 2014
FORMULA
a(n) = 2*A004767(n) = A000290(A017245(n)) - A156676(n+1). - Reinhard Zumkeller, Jul 13 2010
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
A089911(3*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
From Michael Somos, May 15 2014: (Start)
G.f.: (6 + 2*x) / (1 - x)^2.
E.g.f.: (6 + 8*x) * exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(8*sqrt(2)). - Amiram Eldar, Dec 11 2021
EXAMPLE
G.f. = 6 + 14*x + 22*x^2 + 30*x^3 + 38*x^4 + 46*x^5 + 54*x^6 + 62*x^7 + ...
MAPLE
A017137:=n->8*n+6; seq(A017137(n), n=0..50); # Wesley Ivan Hurt, May 13 2014
MATHEMATICA
Range[6, 1000, 8] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
8Range[0, 60]+6 (* or *) LinearRecurrence[{2, -1}, {6, 14}, 60] (* Harvey P. Dale, Nov 14 2021 *)
PROG
(Magma) [8*n+6: n in [0..60]]; // Vincenzo Librandi, Jun 07 2011
(Haskell)
a017137 = (+ 6) . (* 8) -- Reinhard Zumkeller, Jul 05 2013
(PARI) a(n) = 8*n+6; \\ Michel Marcus, Sep 17 2015
(PARI) Vec((6+2*x)/(1-x)^2 + O(x^100)) \\ Altug Alkan, Oct 23 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1996
STATUS
approved
Numbers with digital root 1, 4, 7 or 9.
+10
20
1, 4, 7, 9, 10, 13, 16, 18, 19, 22, 25, 27, 28, 31, 34, 36, 37, 40, 43, 45, 46, 49, 52, 54, 55, 58, 61, 63, 64, 67, 70, 72, 73, 76, 79, 81, 82, 85, 88, 90, 91, 94, 97, 99, 100, 103, 106, 108, 109, 112, 115, 117, 118, 121, 124, 126, 127, 130, 133, 135, 136, 139, 142
OFFSET
1,2
COMMENTS
All squares are members (see A070433).
May also be defined as: possible sums of digits of squares. - Zak Seidov, Feb 11 2008
First differences are periodic: 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, ... - Zak Seidov, Feb 11 2008
Minimal n with corresponding sum-of-digits(n^2) are: 1, 2, 4, 3, 8, 7, 13, 24, 17, 43, 67, 63, 134, 83, 167, 264, 314, 313, 707, 1374, 836, 1667, 2236, 3114, 4472, 6833, 8167, 8937, 16667, 21886, 29614, 60663, 41833, 74833, 89437, 94863, 134164, 191833.
a(n) is the set of all m such that 9k+m can be a perfect square (quadratic residues of 9 including the trivial case of 0). - Gary Detlefs, Mar 19 2010
From Klaus Purath, Feb 20 2023: (Start)
The sum of digits of any term belongs to the sequence. Also the products of any terms belong to the sequence.
This is the union of A017173, A017209, A017245 and A008591.
Positive integers of the forms x^2 + (2*m+1)*x*y + (m^2+m-2)*y^2, for integers m.
This sequence is closed under multiplication. (End)
LINKS
H. I. Okagbue, M. O. Adamu, S. A. Iyase, and A. A. Opanuga, Sequence of Integers Generated by Summing the Digits of their Squares, Indian Journal of Science and Technology, Vol 8(15), DOI: 10.17485/ijst/2015/v8i15/69912, July 2015.
Eric Weisstein's World of Mathematics, Square Number
FORMULA
From R. J. Mathar, Feb 14 2008: (Start)
O.g.f.: x*(2x+1)*(x^2+x+1)/((-1+x)^2*(x+1)*(x^2+1)).
a(n) = a(n-4) + 9. (End)
a(n) = 3*(n - floor(n/4)) - (3 - i^n - (-i)^n - (-1)^n)/2, where i = sqrt(-1). - Gary Detlefs, Mar 19 2010
a(n) = a(n-1)+a(n-4)-a(n-5). - Wesley Ivan Hurt, May 27 2021
a(n) = 3*n - floor(n/4) - 2*floor((n+3)/4). - Ridouane Oudra, Jan 21 2024
E.g.f.: (cos(x) + (9*x - 1)*cosh(x) - 3*sin(x) + (9*x - 2)*sinh(x))/4. - Stefano Spezia, Feb 21 2024
MAPLE
seq( 3*(n-floor(n/4)) - (3-I^n-(-I)^n-(-1)^n)/2, n=1..63); # Gary Detlefs, Mar 19 2010
MATHEMATICA
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 4, 7, 9, 10}, 70] (* Harvey P. Dale, Aug 29 2015 *)
PROG
(PARI) forstep(n=1, 1e3, [3, 3, 2, 1], print1(n", ")) \\ Charles R Greathouse IV, Sep 21 2012
CROSSREFS
For complement see A268226.
KEYWORD
nonn,base,easy
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
STATUS
approved
a(n) = 2*Fibonacci(2*n+1) - 1.
+10
12
1, 3, 9, 25, 67, 177, 465, 1219, 3193, 8361, 21891, 57313, 150049, 392835, 1028457, 2692537, 7049155, 18454929, 48315633, 126491971, 331160281, 866988873, 2269806339, 5942430145, 15557484097, 40730022147, 106632582345, 279167724889, 730870592323
OFFSET
0,2
COMMENTS
Half the number of n X 3 binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Indices of A017245 = 9*n + 7 = 7, 16, 25, 34, for submitted A153819 = 16, 34, 88,. A153819(n) = 9*a(n) + 7 = 18*F(2*n+1) -2; F(n) = Fibonacci = A000045, 2's = A007395. Other recurrence: a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3). - Paul Curtz, Jan 02 2009
LINKS
J. Hietarinta and C.-M. Viallet, Singularity confinement and chaos in discrete systems, Physical Review Letters 81 (1998), pp. 326-328.
FORMULA
a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 25; a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4).
a(n) = 3*a(n-1) - a(n-2) + 1 for n>1, a(1) = 3, a(0) = 0. - Reinhard Zumkeller, May 02 2006
From R. J. Mathar, Feb 23 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: (1-x+x^2)/((1-x)*(1-3*x+x^2)). (End)
a(n) = 1 + 2*Sum_{k=0..n} Fibonacci(2*k) = 1+2*A027941(n). - Gary Detlefs, Dec 07 2010
a(n) = (2^(-n)*(-5*2^n -(3-sqrt(5))^n*(-5+sqrt(5)) +(3+sqrt(5))^n*(5+sqrt(5))))/5. - Colin Barker, Nov 02 2016
MATHEMATICA
a[n_]:= a[n] = 3a[n-1] - 3a[n-3] + a[n-4]; a[0] = 1; a[1] = 3; a[2] = 9; a[3] = 25; Table[ a[n], {n, 0, 30}]
Table[2*Fibonacci[2*n+1]-1, {n, 0, 30}] (* G. C. Greubel, Apr 22 2018 *)
LinearRecurrence[{4, -4, 1}, {1, 3, 9}, 30] (* Harvey P. Dale, Sep 22 2020 *)
PROG
(Magma) [2*Fibonacci(2*n+1)-1: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
(PARI) a(n) = 2*fibonacci(2*n+1)-1 \\ Charles R Greathouse IV, Jun 11 2015
(PARI) Vec((1-x+x^2)/((1-x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 02 2016
(Sage) [2*fibonacci(2*n+1)-1 for n in (0..30)] # G. C. Greubel, Jul 11 2019
(GAP) List([0..30], n-> 2*Fibonacci(2*n+1)-1); # G. C. Greubel, Jul 11 2019
CROSSREFS
Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.
Equals A052995 - 1.
Bisection of A001595, A062114, A066983.
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Mar 22 2002
EXTENSIONS
Simpler definition from Vladeta Jovovic, Mar 19 2003
STATUS
approved
a(n) = 13*n + 11.
+10
9
11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
OFFSET
0,1
COMMENTS
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 11, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
Sequences of the type 13*n + k, for k = 0..12, without squares and cubes:
k = 2: A153080,
k = 6: A186113,
k = 7: A269044,
k = 11: this case.
The sum of the sixth powers of any two terms of the sequence is also a term of the sequence. Example: a(3)^6 + a(8)^6 = a(179129674278) = 2328685765625.
The primes of the sequence are listed in A140373.
FORMULA
G.f.: (11 + 2*x)/(1 - x)^2.
a(n) = -A153080(-n-1).
Sum_{i = h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 35)/2).
Sum_{i >= 0} 1/a(i)^2 = .012486605016510955990... = polygamma(1, 11/13)/13^2.
E.g.f.: (11 + 13*x)*exp(x). - G. C. Greubel, May 31 2024
MATHEMATICA
13 Range[0, 60] + 11
Range[11, 800, 13]
Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *)
LinearRecurrence[{2, -1}, {11, 24}, 60] (* Harvey P. Dale, Jun 14 2023 *)
PROG
(PARI) vector(60, n, n--; 13*n+11)
(Sage) [13*n+11 for n in range(61)]
(Python) [13*n+11 for n in range(61)]
(Maxima) makelist(13*n+11, n, 0, 60);
(Magma) [13*n+11: n in [0..60]];
CROSSREFS
Subsequence of A094784, A106389.
Cf. A140373.
Similar sequences of the type k*n+k-2: A023443 (k=1), A005843 (k=2), A016777 (k=3), A016825 (k=4), A016885 (k=5), A016957 (k=6), A017041 (k=7), A017137 (k=8), A017245 (k=9), A017365 (k=10), A017497 (k=11), A017641 (k=12).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), this sequence (q=11).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 19 2016
STATUS
approved
Odd composite numbers congruent to 7 modulo 9.
+10
8
25, 115, 133, 169, 187, 205, 259, 295, 385, 403, 475, 493, 511, 529, 565, 583, 637, 655, 745, 763, 781, 799, 817, 835, 871, 889, 925, 943, 961, 979, 1015, 1105, 1141, 1159, 1177, 1195, 1267, 1285, 1339, 1357, 1375, 1393, 1411, 1465, 1501
OFFSET
1,1
COMMENTS
Subsequence of A017245 (9n + 7).
LINKS
MATHEMATICA
Select[18Range[100] + 7, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 25 2014 *)
Select[Range[1, 1501, 2], CompositeQ[#]&&Mod[#, 9]==7&] (* or *) Select[Range[7, 1501, 18], CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 31 2021 *)
PROG
(PARI) lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 7), print1(n, ", ")); ); } \\ Michel Marcus, Sep 22 2014
KEYWORD
nonn,easy
AUTHOR
Odimar Fabeny, Sep 22 2014
STATUS
approved
Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the terms along the line from 0 in the direction 0,7,...
+10
7
0, 7, 23, 48, 82, 125, 177, 238, 308, 387, 475, 572, 678, 793, 917, 1050, 1192, 1343, 1503, 1672, 1850, 2037, 2233, 2438, 2652, 2875, 3107, 3348, 3598, 3857, 4125, 4402, 4688, 4983, 5287, 5600, 5922, 6253, 6593, 6942, 7300, 7667, 8043, 8428, 8822, 9225
OFFSET
0,2
COMMENTS
Central terms of triangle A245300. - Reinhard Zumkeller, Jul 17 2014
Digital root of a(n) = A180597(n). - Gionata Neri, Apr 29 2015
FORMULA
a(n) = n*(9*n+5)/2.
a(n) = 9*n + a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Jul 07 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(7+2*x)/(1-x)^3. (End)
a(n) = A218470(9*n+6). - Philippe Deléham, Mar 27 2013
a(n) = a(n-1) + A017245(n-1), a(0)=0. - Gionata Neri, Apr 30 2015
EXAMPLE
The spiral begins:
.
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
.
MATHEMATICA
s=0; lst={s}; Do[s+=n++ +7; AppendTo[lst, s], {n, 0, 7!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
CoefficientList[Series[x (7 + 2 x)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Jan 11 2020 *)
PROG
(Haskell)
a062725 n = n * (9 * n + 5) `div` 2 -- Reinhard Zumkeller, Jul 17 2014
(PARI) a(n) = n*(9*n+5)/2 \\ Charles R Greathouse IV, Apr 30 2015
CROSSREFS
Cf. A051682.
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Jul 21 2001
EXTENSIONS
Formula that confused indices corrected by R. J. Mathar, Jun 04 2010
STATUS
approved
Partial sums of A140091.
+10
6
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
OFFSET
0,2
COMMENTS
After 0, this sequence is the third column of the array in A185874.
Sequence is related to A051744 by A051744(n) = n*a(n)/3 - Sum_{i=0..n-1} a(i) for n>0.
FORMULA
O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)
EXAMPLE
The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
. 0;
. 1, 5;
. 4, 7, 10;
. 9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
MATHEMATICA
Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
LinearRecurrence[{4, -6, 4, -1}, {0, 6, 21, 48}, 50] (* Harvey P. Dale, Jul 18 2019 *)
PROG
(PARI) vector(50, n, n--; n*(n+1)*(n+5)/2)
(Sage) [n*(n+1)*(n+5)/2 for n in (0..50)]
(Magma) [n*(n+1)*(n+5)/2: n in [0..50]];
CROSSREFS
Cf. similar sequences of the type n*(n+1)*(n+k)/2: A002411 (k=0), A006002 (k=1), A027480 (k=2), A077414 (k=3, with offset 1), A212343 (k=4, without the initial 0), this sequence (k=5).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 13 2016
STATUS
approved
a(n) = 81*n^2 - 44*n + 6.
+10
5
6, 43, 242, 603, 1126, 1811, 2658, 3667, 4838, 6171, 7666, 9323, 11142, 13123, 15266, 17571, 20038, 22667, 25458, 28411, 31526, 34803, 38242, 41843, 45606, 49531, 53618, 57867, 62278, 66851, 71586, 76483, 81542, 86763, 92146, 97691, 103398, 109267, 115298, 121491
OFFSET
0,1
COMMENTS
The identity (6561*n^2 - 3564*n + 485)^2 - (81*n^2 - 44*n + 6)*(729*n - 198)^2 = 1 can be written as A156774(n)^2 - a(n)*A156772(n)^2 = 1 for n > 0.
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [9n-3; {1, 1, 3, 1, 9n-4, 1, 3, 1, 1, 18n-6}]. - Magus K. Chu, Sep 13 2022
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (6 + 25*x + 131*x^2)/(1-x)^3.
a(n) = A000290(A017245(n-1)) - A017137(n-1). - Reinhard Zumkeller, Jul 13 2010
E.g.f.: (6 + 37*x + 81*x^2)*exp(x). - Elmo R. Oliveira, Oct 19 2024
MAPLE
A156676:=n->81*n^2-44*n+6: seq(A156676(n), n=0..100); # Wesley Ivan Hurt, Apr 26 2017
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {6, 43, 242}, 40]
Table[81n^2-44n+6, {n, 0, 40}] (* Harvey P. Dale, Oct 29 2019 *)
PROG
(Magma) [81*n^2 - 44*n + 6: n in [0..40] ];
(PARI) a(n)=81*n^2-44*n+6 \\ Charles R Greathouse IV, Dec 23 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 15 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved
Triangle read by rows where T(m,n)=2*m*n + m + n - 6.
+10
4
-2, 1, 6, 4, 11, 18, 7, 16, 25, 34, 10, 21, 32, 43, 54, 13, 26, 39, 52, 65, 78, 16, 31, 46, 61, 76, 91, 106, 19, 36, 53, 70, 87, 104, 121, 138, 22, 41, 60, 79, 98, 117, 136, 155, 174, 25, 46, 67, 88, 109, 130, 151, 172, 193, 214, 28, 51, 74, 97, 120, 143, 166, 189, 212
OFFSET
1,1
COMMENTS
Numbers n such that 2n+13 is not prime.
First column: A016777, second column: A016861, third column: A017029, fourth column: A017245. - Vincenzo Librandi, Nov 21 2012
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
EXAMPLE
Triangle begins:
-2;
1, 6;
4, 11, 18;
7, 16, 25, 34;
10, 21, 32, 43, 54;
13, 26, 39, 52, 65, 78;
16, 31, 46, 61, 76, 91, 106;
19, 36, 53, 70, 87, 104, 121, 138;
22, 41, 60, 79, 98, 117, 136, 155, 174;
25, 46, 67, 88, 109, 130, 151, 172, 193, 214; etc.
MATHEMATICA
t[n_, k_]:= 2 n*k + n + k - 6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
PROG
(Magma) [2*n*k + n + k - 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Vincenzo Librandi, Jan 24 2009
STATUS
approved

Search completed in 0.013 seconds