# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a267370 Showing 1-1 of 1 %I A267370 #61 Sep 08 2022 08:46:15 %S A267370 0,6,21,48,90,150,231,336,468,630,825,1056,1326,1638,1995,2400,2856, %T A267370 3366,3933,4560,5250,6006,6831,7728,8700,9750,10881,12096,13398,14790, %U A267370 16275,17856,19536,21318,23205,25200,27306,29526,31863,34320,36900,39606,42441,45408,48510 %N A267370 Partial sums of A140091. %C A267370 After 0, this sequence is the third column of the array in A185874. %C A267370 Sequence is related to A051744 by A051744(n) = n*a(n)/3 - Sum_{i=0..n-1} a(i) for n>0. %H A267370 Bruno Berselli, Table of n, a(n) for n = 0..1000 %H A267370 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). %F A267370 O.g.f.: 3*x*(2 - x)/(1 - x)^4. %F A267370 E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2. %F A267370 a(n) = n*(n + 1)*(n + 5)/2. %F A267370 a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2. %F A267370 a(n) = 3*A005581(n+1). %F A267370 a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0. %F A267370 From _Amiram Eldar_, Jan 06 2021: (Start) %F A267370 Sum_{n>=1} 1/a(n) = 163/600. %F A267370 Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End) %e A267370 The sequence is also provided by the row sums of the following triangle (see the fourth formula above): %e A267370 . 0; %e A267370 . 1, 5; %e A267370 . 4, 7, 10; %e A267370 . 9, 11, 13, 15; %e A267370 . 16, 17, 18, 19, 20; %e A267370 . 25, 25, 25, 25, 25, 25; %e A267370 . 36, 35, 34, 33, 32, 31, 30; %e A267370 . 49, 47, 45, 43, 41, 39, 37, 35; %e A267370 . 64, 61, 58, 55, 52, 49, 46, 43, 40; %e A267370 . 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc. %e A267370 First column is A000290. %e A267370 Second column is A027690. %e A267370 Third column is included in A189834. %e A267370 Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc. %e A267370 Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532. %t A267370 Table[n (n + 1) (n + 5)/2, {n, 0, 50}] %t A267370 LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* _Harvey P. Dale_, Jul 18 2019 *) %o A267370 (PARI) vector(50, n, n--; n*(n+1)*(n+5)/2) %o A267370 (Sage) [n*(n+1)*(n+5)/2 for n in (0..50)] %o A267370 (Magma) [n*(n+1)*(n+5)/2: n in [0..50]]; %Y A267370 Cf. A005581, A051744, A105163, A140091, A185874. %Y A267370 Cf. similar sequences of the type n*(n+1)*(n+k)/2: A002411 (k=0), A006002 (k=1), A027480 (k=2), A077414 (k=3, with offset 1), A212343 (k=4, without the initial 0), this sequence (k=5). %K A267370 nonn,easy %O A267370 0,2 %A A267370 _Bruno Berselli_, Jan 13 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE