[go: up one dir, main page]

login
Revision History for A247683 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Odd composite numbers congruent to 7 modulo 9.
(history; published version)
#21 by Harvey P. Dale at Wed Mar 31 16:05:39 EDT 2021
STATUS

editing

approved

#20 by Harvey P. Dale at Wed Mar 31 16:05:36 EDT 2021
MATHEMATICA

Select[Range[1, 1501, 2], CompositeQ[#]&&Mod[#, 9]==7&] (* or *) Select[Range[7, 1501, 18], CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 31 2021 *)

STATUS

approved

editing

#19 by N. J. A. Sloane at Fri Sep 26 21:50:45 EDT 2014
STATUS

proposed

approved

#18 by Odimar Fabeny at Fri Sep 26 09:52:32 EDT 2014
STATUS

editing

proposed

#17 by Alonso del Arte at Thu Sep 25 12:25:24 EDT 2014
MATHEMATICA

Select[18Range[100] + 7, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 25 2014 *)

#16 by Alonso del Arte at Thu Sep 25 12:20:53 EDT 2014
NAME

Odd nonprimes (mod 9) = composite numbers congruent to 7 modulo 9.

COMMENTS

Subsequence of A017245 (9*n 9n + 7).

STATUS

proposed

editing

#15 by Derek Orr at Thu Sep 25 11:01:55 EDT 2014
STATUS

editing

proposed

#14 by Derek Orr at Thu Sep 25 11:01:45 EDT 2014
NAME

Odd Nonprimes nonprimes (mod 9) = 7.

COMMENTS

Itยดs subsequence Subsequence of A017245 (9*n + 7).

PROG

(PARI) lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 7), print1(n, ", ")); ); } \\ _Michel Marcus, _, Sep 22 2014

STATUS

proposed

editing

#13 by Odimar Fabeny at Thu Sep 25 10:24:37 EDT 2014
STATUS

editing

proposed

#12 by Odimar Fabeny at Wed Sep 24 09:57:54 EDT 2014
DATA

25, 115, 133, 169, 187, 205, 259, 295, 385, 403, 475, 493, 511, 529, 565, 583, 637, 655, 745, 763, 781, 799, 817, 835, 871, 889, 925, 943, 961, 979, 1015, 1105, 1141, 1159, 1177, 1195, 1267, 1285, 1339, 1357, 1375, 1393, 1411, 1465, 1501, 1519, 1537, 1555, 1573, 1591, 1645, 1681, 1717, 1735, 1771, 1807, 1825, 1843, 1897, 1915, 1969, 2005, 2023, 2041, 2059, 2077, 2095, 2149, 2167, 2185, 2257, 2275, 2329, 2365, 2401, 2419, 2455, 2491, 2509, 2527, 2545, 2563, 2581, 2599, 2635