[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A176601 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Primes p that p//13 and p//31 are consecutive primes.
(history; published version)
#4 by Charles R Greathouse IV at Thu Nov 21 12:50:03 EST 2013
MATHEMATICA

okQ[n_]:=Module[{idn=IntegerDigits[n], p13, p31}, p13=FromDigits[ Join[ idn, {1, 3}]]; p31=FromDigits[Join[idn, {3, 1}]]; PrimeQ[p13]&&NextPrime[p13] == p31]; Select[Prime[Range[16000]], okQ] (* From _Harvey P. Dale, _, Jan 21 2012 *)

Discussion
Thu Nov 21
12:50
OEIS Server: https://oeis.org/edit/global/2062
#3 by Harvey P. Dale at Sat Jan 21 12:14:04 EST 2012
STATUS

editing

approved

#2 by Harvey P. Dale at Sat Jan 21 12:13:41 EST 2012
DATA

19, 853, 2287, 2467, 4243, 4513, 4621, 5431, 5701, 7243, 7477, 7591, 7927, 8221, 8317, 9283, 9439, 9817, 10039, 12781, 13933, 14461, 14923, 15727, 16693, 17443, 18199, 18217, 19207, 20749, 21139, 22147, 23761, 25471, 26701, 26953, 27481, 28111, 28447, 28579

LINKS

Harvey P. Dale, <a href="/A176601/b176601.txt">Table of n, a(n) for n = 1..2000</a>

MATHEMATICA

okQ[n_]:=Module[{idn=IntegerDigits[n], p13, p31}, p13=FromDigits[ Join[ idn, {1, 3}]]; p31=FromDigits[Join[idn, {3, 1}]]; PrimeQ[p13]&&NextPrime[p13] == p31]; Select[Prime[Range[16000]], okQ] (* From Harvey P. Dale, Jan 21 2012 *)

EXTENSIONS

More terms from Harvey P. Dale, Jan 21 2012

STATUS

approved

editing

#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Primes p that p//13 and p//31 are consecutive primes.

DATA

19, 853, 2287, 2467, 4243, 4513, 4621, 5431, 5701, 7243, 7477, 7591, 7927, 8221, 8317, 9283, 9439, 9817, 10039, 12781

OFFSET

1,1

COMMENTS

See A176600

EXAMPLE

19//13 = 1913 = prime(293), 19//31 = 1931 = prime(294), 19 = prime(8) is 1st term

853//13 = 85313 = prime(8306), 853//31 = 85331 = prime(8307), 853 = prime(147) is 2nd term

KEYWORD

base,nonn

AUTHOR

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 21 2010

STATUS

approved