[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168417
Primes q for which 1 concatenated with q^3 (A168327) is prime.
9
3, 13, 103, 109, 139, 163, 181, 211, 379, 457, 463, 1021, 1087, 1123, 1201, 1249, 1303, 1381, 1579, 1597, 1609, 1699, 1861, 1873, 1987, 2011, 2029, 2053, 2143, 2221, 2281, 2341, 2473, 2503, 2557, 2731, 2857, 3061, 3067, 3217, 3253, 3271, 3319, 3331, 3517
OFFSET
1,1
COMMENTS
It is conjectured that this sequence is infinite.
REFERENCES
Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
EXAMPLE
(1) "1 3^3"=10^2+3^3=127=prime(31) gives a(1)=3=prime(2)
(2) "1 103^3"=10^7+103^3=11092727=prime(732258) gives a(3)=103=prime(27)
MATHEMATICA
Select[Prime[Range[500]], PrimeQ[FromDigits[Join[{1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Jan 21 2013 *)
CROSSREFS
A168147 Primes of the form p = 1 + 10*n^3 for a natural number n
A168327 Primes of concatenated form p= "1 n^3"
A168375 Natural numbers n for which the concatenation p= "1 n^3" is prime
Sequence in context: A268215 A323687 A338697 * A352170 A240167 A127004
KEYWORD
nonn,base
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 25 2009
EXTENSIONS
Edited and extended by Charles R Greathouse IV, Apr 23 2010
STATUS
approved