OFFSET
1,1
COMMENTS
Given the cube n^3 with k = A111393(n) decimal digits, we have to check whether the concatenation, 11^3 * 10^k + n^3, is a prime.
The number k of digits that 1331=11^3 is shifted is not a multiple of 3,
because the form a^3+b^3 = (a^2+a*b+b^2) * (a - b) cannot construct a prime.
REFERENCES
K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
21 is in the sequence because 21^3=9261, and the concatenation is 13319261=prime(868687).
27 is in the sequence because 27^3=19683, and the concatenation is 133119683=prime(7545064).
MATHEMATICA
Select[Range[2000], PrimeQ[FromDigits[Join[{1, 3, 3, 1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 14 2011 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 26 2010
EXTENSIONS
Comments sligthly rephrased - R. J. Mathar, Mar 05 2010
STATUS
approved