[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174441
Primes p such that the concatenations p//1331 and 1331//p are both prime numbers (for naturals see A174355).
3
53, 347, 431, 641, 647, 821, 1709, 1973, 2081, 2591, 2657, 2963, 4073, 4139, 4643, 4787, 5039, 5483, 5657, 6029, 6791, 6917, 6959, 7127, 7673, 8273, 8693, 8807, 8849, 9221, 9311, 9689, 10139, 10457, 11423, 12503, 12743, 13619, 13913, 14549
OFFSET
1,1
COMMENTS
See comments and references for A173836, A174213.
LINKS
EXAMPLE
531331 = prime(43928), 133153 = prime(12427) => p(1) = 53 = prime(16).
3471331 = prime(248286), 1331347 = prime(102237) => p(2) = 347 = prime(69).
139131331 = prime(7865788), 133113913 = prime(7544750) => p(39) = 13913 = prime(1645).
MATHEMATICA
Select[Prime[Range[2000]], AllTrue[{#*10^4+1331, 1331*10^IntegerLength[ #]+#}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 08 2016 *)
PROG
(PARI) isok(n) = isprime(n) && isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ Michel Marcus, Aug 27 2013
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 20 2010
STATUS
approved