[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376536
a(n) = (1/3^n) * Sum_{k=0..n^3} ( (binomial(n^3, k) * 2^k) (mod 3^n) ).
6
1, 4, 5, 33, 63, 112, 179, 260, 369, 502, 659, 868, 1098, 1367, 1703, 2046, 2457, 2895, 3392, 3975, 4591, 5322, 6069, 6899, 7807, 8828, 9836, 10948, 12290, 13440, 14838, 16392, 18046, 19712, 21259, 23381, 25382, 27506, 29679, 32083
OFFSET
1,2
LINKS
J. B. Roberts, On Binomial Coefficient Residues, Canadian Journal of Mathematics, Volume 9 1957, pp. 363 - 370.
EXAMPLE
The table of residues of coefficients of x^k in (1 + 2*x)^(n^3) modulo 3^n begins:
(1+2*x) (mod 3): [1, 2];
(1+2*x)^8 (mod 3^2): [1, 7, 4, 7, 4, 1, 1, 7, 4];
(1+2*x)^27 (mod 3^3): [1, 0, 0, 18, 0, 0, 9, 0, 0, 24, 0, 0, 18, 0, 0, 9, 0, 0, 3, 0, 0, 18, 0, 0, 9, 0, 0, 26];
(1+2*x)^64 (mod 3^4): [1, 47, 45, 78, 30, 72, 66, 6, 45, 11, 40, 54, 45, 36, 54, 36, 18, 54, 48, 15, 27, 63, 18, 27, 45, 63, 27, 46, 29, 72, 6, 21, 18, 3, 15, 72, 53, 43, 27, 9, 72, 27, 72, 36, 27, 33, 66, 54, 72, 9, 54, 63, 72, 54, 7, 32, 45, 51, 57, 72, 39, 33, 45, 44, 52];
(1+2*x)^125 (mod 3^5): [1, 7, 139, 220, 55, 232, 46, 106, 211, 140, 89, 182, 56, 95, 62, 140, 224, 128, 78, 60, 150, 42, 132, 168, 213, 195, 42, 65, 212, 44, 233, 119, 122, 47, 140, 242, 238, 127, 115, 214, 94, 46, 184, 100, 196, 171, 225, 198, 36, 9, 144, 9, 63, 36, 177, 24, 60, 222, 177, 159, 204, 132, 6, 12, 84, 210, 183, 228, 3, 174, 84, 48, 72, 18, 45, 207, 234, 99, 234, 180, 207, 95, 179, 83, 83, 203, 8, 158, 26, 38, 79, 229, 127, 145, 16, 13, 160, 13, 181, 165, 183, 93, 201, 111, 75, 30, 48, 201, 148, 64, 160, 214, 175, 208, 31, 82, 232, 17, 200, 95, 131, 53, 119, 71, 65, 176];
...
where a(n) equals the sum of row n divided by 3^n:
a(1) = (1 + 2)/3 = 1;
a(2) = (1 + 7 + 4 + 7 + 4 + 1 + 1 + 7 + 4)/3^2 = 4;
a(3) = (1 + 0 + 0 + 18 + 0 + 0 + 9 + 0 + 0 + 24 + 0 + 0 + 18 + 0 + 0 + 9 + 0 + 0 + 3 + 0 + 0 + 18 + 0 + 0 + 9 + 0 + 0 + 26)/3^3 = 5;
a(4) = (1 + 47 + 45 + 78 + 30 + 72 + 66 + 6 + 45 + 11 + 40 + 54 + 45 + 36 + 54 + 36 + 18 + 54 + 48 + 15 + 27 + 63 + 18 + 27 + 45 + 63 + 27 + 46 + 29 + 72 + 6 + 21 + 18 + 3 + 15 + 72 + 53 + 43 + 27 + 9 + 72 + 27 + 72 + 36 + 27 + 33 + 66 + 54 + 72 + 9 + 54 + 63 + 72 + 54 + 7 + 32 + 45 + 51 + 57 + 72 + 39 + 33 + 45 + 44 + 52)/3^4 = 33;
...
PROG
(PARI) {a(n) = sum(k=0, n^3, (binomial(n^3, k) * 2^k) % (3^n) )/3^n}
for(n=1, 35, print1(a(n), ", "))
(Python)
def A376536(n):
m, r, c, a, b, d = 3**n, n**3, 1, 2, n**3, 1
for k in range(1, r+1):
c += b//d*a%m
a = a*2%m
b *= r-k
d *= k+1
return c//m # Chai Wah Wu, Oct 07 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 06 2024
STATUS
approved