OFFSET
1,4
LINKS
John K. Sikora, Table of n, a(n) for n = 1..19
J. K. Sikora, Analysis of the High Water Mark Convergents of Champernowne's Constant in Various Bases, arXiv:1408.0261 [math.NT]
FORMULA
It appears that: Define NCD(N)=3-N+(sum{m=1..(N-3)} 2*m*3^(m-1)); then for n>=5, a(n) = NCD(n)-2*NCD(n-1)-3*(n-2)+4.
PROG
(Ruby) puts (5..19).collect {|n| (1..(n-3)).inject(0) {|sum, m| sum+2*m*3**(m-1)}+3-n-2*((1..(n-4)).inject(0) {|sum1, m1| sum1+2*m1*3**(m1-1)}+3-(n-1))-3*(n-2)+4}
CROSSREFS
Cf. A077772 (Continued fraction expansion of the ternary Champernowne constant.)
Cf. A244757 (Incrementally largest terms in the continued fraction for the base 3 Champernowne constant.)
Cf. A244332 (Position of the incrementally largest term in the continued fraction for the base 3 Champernowne constant.)
KEYWORD
base,nonn,more
AUTHOR
John K. Sikora, Jun 27 2014
STATUS
approved