Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 08 2024 03:14:05
%S 1,4,5,33,63,112,179,260,369,502,659,868,1098,1367,1703,2046,2457,
%T 2895,3392,3975,4591,5322,6069,6899,7807,8828,9836,10948,12290,13440,
%U 14838,16392,18046,19712,21259,23381,25382,27506,29679,32083
%N a(n) = (1/3^n) * Sum_{k=0..n^3} ( (binomial(n^3, k) * 2^k) (mod 3^n) ).
%H J. B. Roberts, <a href="https://doi.org/10.4153/CJM-1957-043-6">On Binomial Coefficient Residues</a>, Canadian Journal of Mathematics, Volume 9 1957, pp. 363 - 370.
%e The table of residues of coefficients of x^k in (1 + 2*x)^(n^3) modulo 3^n begins:
%e (1+2*x) (mod 3): [1, 2];
%e (1+2*x)^8 (mod 3^2): [1, 7, 4, 7, 4, 1, 1, 7, 4];
%e (1+2*x)^27 (mod 3^3): [1, 0, 0, 18, 0, 0, 9, 0, 0, 24, 0, 0, 18, 0, 0, 9, 0, 0, 3, 0, 0, 18, 0, 0, 9, 0, 0, 26];
%e (1+2*x)^64 (mod 3^4): [1, 47, 45, 78, 30, 72, 66, 6, 45, 11, 40, 54, 45, 36, 54, 36, 18, 54, 48, 15, 27, 63, 18, 27, 45, 63, 27, 46, 29, 72, 6, 21, 18, 3, 15, 72, 53, 43, 27, 9, 72, 27, 72, 36, 27, 33, 66, 54, 72, 9, 54, 63, 72, 54, 7, 32, 45, 51, 57, 72, 39, 33, 45, 44, 52];
%e (1+2*x)^125 (mod 3^5): [1, 7, 139, 220, 55, 232, 46, 106, 211, 140, 89, 182, 56, 95, 62, 140, 224, 128, 78, 60, 150, 42, 132, 168, 213, 195, 42, 65, 212, 44, 233, 119, 122, 47, 140, 242, 238, 127, 115, 214, 94, 46, 184, 100, 196, 171, 225, 198, 36, 9, 144, 9, 63, 36, 177, 24, 60, 222, 177, 159, 204, 132, 6, 12, 84, 210, 183, 228, 3, 174, 84, 48, 72, 18, 45, 207, 234, 99, 234, 180, 207, 95, 179, 83, 83, 203, 8, 158, 26, 38, 79, 229, 127, 145, 16, 13, 160, 13, 181, 165, 183, 93, 201, 111, 75, 30, 48, 201, 148, 64, 160, 214, 175, 208, 31, 82, 232, 17, 200, 95, 131, 53, 119, 71, 65, 176];
%e ...
%e where a(n) equals the sum of row n divided by 3^n:
%e a(1) = (1 + 2)/3 = 1;
%e a(2) = (1 + 7 + 4 + 7 + 4 + 1 + 1 + 7 + 4)/3^2 = 4;
%e a(3) = (1 + 0 + 0 + 18 + 0 + 0 + 9 + 0 + 0 + 24 + 0 + 0 + 18 + 0 + 0 + 9 + 0 + 0 + 3 + 0 + 0 + 18 + 0 + 0 + 9 + 0 + 0 + 26)/3^3 = 5;
%e a(4) = (1 + 47 + 45 + 78 + 30 + 72 + 66 + 6 + 45 + 11 + 40 + 54 + 45 + 36 + 54 + 36 + 18 + 54 + 48 + 15 + 27 + 63 + 18 + 27 + 45 + 63 + 27 + 46 + 29 + 72 + 6 + 21 + 18 + 3 + 15 + 72 + 53 + 43 + 27 + 9 + 72 + 27 + 72 + 36 + 27 + 33 + 66 + 54 + 72 + 9 + 54 + 63 + 72 + 54 + 7 + 32 + 45 + 51 + 57 + 72 + 39 + 33 + 45 + 44 + 52)/3^4 = 33;
%e ...
%o (PARI) {a(n) = sum(k=0,n^3, (binomial(n^3,k) * 2^k) % (3^n) )/3^n}
%o for(n=1,35,print1(a(n),", "))
%o (Python)
%o def A376536(n):
%o m, r, c, a, b, d = 3**n, n**3, 1, 2, n**3, 1
%o for k in range(1,r+1):
%o c += b//d*a%m
%o a = a*2%m
%o b *= r-k
%o d *= k+1
%o return c//m # _Chai Wah Wu_, Oct 07 2024
%Y Cf. A376531, A376532, A376533, A376534, A376535.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Oct 06 2024