[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376531
a(n) = (1/2^n) * Sum_{k=0..n^2} ( binomial(n^2,k) (mod 2^n) ).
8
1, 1, 4, 4, 14, 19, 24, 32, 40, 47, 66, 69, 90, 101, 110, 116, 144, 162, 174, 186, 230, 221, 270, 275, 318, 352, 362, 391, 428, 442, 480, 494, 526, 568, 602, 648, 682, 712, 784, 814, 846, 866, 928, 951, 1028, 1061, 1096, 1133, 1206, 1256, 1296, 1378, 1434, 1441, 1504, 1577, 1616, 1697, 1734, 1837
OFFSET
1,3
LINKS
EXAMPLE
The table of residues of the binomial coefficients in (1 + x)^(n^2) modulo 2^n begins:
(1+x) (mod 2): [1, 1];
(1+x)^4 (mod 2^2): [1, 0, 2, 0, 1];
(1+x)^9 (mod 2^3): [1, 1, 4, 4, 6, 6, 4, 4, 1, 1];
(1+x)^16 (mod 2^4): [1, 0, 8, 0, 12, 0, 8, 0, 6, 0, 8, 0, 12, 0, 8, 0, 1];
(1+x)^25 (mod 2^5): [1, 25, 12, 28, 10, 10, 12, 28, 7, 31, 24, 24, 12, 12, 24, 24, 31, 7, 28, 12, 10, 10, 28, 12, 25, 1];
(1+x)^36 (mod 2^6): [1, 36, 54, 36, 25, 32, 16, 32, 52, 48, 40, 48, 4, 32, 48, 32, 46, 24, 4, 24, 46, 32, 48, 32, 4, 48, 40, 48, 52, 32, 16, 32, 25, 36, 54, 36, 1];
(1+x)^49 (mod 2^7): [1, 49, 24, 120, 36, 68, 72, 40, 18, 82, 72, 104, 52, 20, 88, 120, 95, 79, 112, 48, 72, 8, 80, 16, 60, 60, 16, 80, 8, 72, 48, 112, 79, 95, 120, 88, 20, 52, 104, 72, 82, 18, 40, 72, 68, 36, 120, 24, 49, 1];
...
where a(n) equals the sum of row n divided by 2^n:
a(1) = (1 + 1)/2 = 1;
a(2) = (1 + 0 + 2 + 0 + 1)/2^2 = 1;
a(3) = (1 + 1 + 4 + 4 + 6 + 6 + 4 + 4 + 1 + 1)/2^3 = 4;
a(4) = (1 + 0 + 8 + 0 + 12 + 0 + 8 + 0 + 6 + 0 + 8 + 0 + 12 + 0 + 8 + 0 + 1)/2^4 = 4;
a(5) = (1 + 25 + 12 + 28 + 10 + 10 + 12 + 28 + 7 + 31 + 24 + 24 + 12 + 12 + 24 + 24 + 31 + 7 + 28 + 12 + 10 + 10 + 28 + 12 + 25 + 1)/2^5 = 14;
a(6) = (1 + 36 + 54 + 36 + 25 + 32 + 16 + 32 + 52 + 48 + 40 + 48 + 4 + 32 + 48 + 32 + 46 + 24 + 4 + 24 + 46 + 32 + 48 + 32 + 4 + 48 + 40 + 48 + 52 + 32 + 16 + 32 + 25 + 36 + 54 + 36 + 1)/2^6 = 19;
...
Odd terms occur at positions: [1, 2, 6, 10, 12, 14, 22, 24, 28, 44, 46, 48, 54, 56, 58, 60, 66, 72, 74, 78, 82, 84, 86, 90, 94, 96, 102, 106, 116, 122, 136, 142, 144, 146, 150, ...].
MATHEMATICA
Table[(1/2^n)*Sum[Mod[Binomial[n^2, k], 2^n], {k, 0, n^2}], {n, 60}] (* James C. McMahon, Oct 07 2024 *)
PROG
(PARI) {a(n) = sum(k=0, n^2, binomial(n^2, k) % (2^n) )/2^n}
for(n=1, 60, print1(a(n), ", "))
(Python)
def A376531(n):
m, r, c, b, d = (1<<n)-1, n**2, 1, n**2, 1
for k in range(1, r+1):
c += b//d&m
b *= r-k
d *= k+1
return c>>n # Chai Wah Wu, Oct 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 06 2024
STATUS
approved